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CHAPTER 1

AN INTRODUCTION TO PREVENTIVE

MAIN T ENAN CE POL IC IE S

1. 1 INTRODUCTION

During the past two decades, there has been a continuing interest

in studying maintenance models for systems with stochastic failures and

in their military, industrial, environmental, and ecological applications.

These applications may include the maintenance of complex electronic

and/or mechanical equipment such as computers and airplanes, control

of pollutants in the environment, maintenance of the human body, and

maintenance of ecological balance in populations of plants and animals.

Barlow and Proschan (1965), McCall (1965), and Pierskalla and

Voelker (1973) have researched and surveyed various maintenance

models in the area of maintainability.

A broad class of what in the area of maintainability is known as

optimal preventive maintenance models has received the most attention in

the literature. An equipment whose failure rate increases with time

(e. g. Weibull, truncated normal, gamma distributions) may break down

during its actual operation more frequently as it ages. These break-

downs can often be costly and a preventive maintenance strategy can

cut down on the irregularity of breakdowns by carrying out regularly

planned repairs before the system fails. A preventive maintenance

policy can also determine the replacement time after which the existing

system is no longer economical to keep. To judge the quality of main-
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tenance schedules, the decision can be based on several economic

criteria, including minimizing the long-term average cost per unit time

and maximizing the steady state availability or limiting efficiency which

is the fraction of up-time over a long time interval.

A substantial body of literature on the preventive maintenance of

stochastically failing systems has been devoted to the analysis of two

strategies. One is called "Age Replacement" or policy 1, and the other

is known as "Periodic Replacement with Minimal Repair at Failure" or

policy II. It is usually assumed that the failure rate is a strictly

increasing function of time. In earlier works, generally, a preventive

maintenance action refers to a renewal where the system becomes as

good as new. Another assumption that seems to be made in the

literature most frequently is the notion of zero down-time duration for

either repair or replacement.

Here, we present a brief discussion and literature review on

Policies I aiid II.

1. 2 POLICY I

This strategy is most useful in maintaining less complex equipment,

such as car engines. This strategy is defined as follows:

Perform preventive maintenance at the time of failure or if T

hours of actual operation have elapsed. Preventive mainte-

nance is then rescheduled. This policy is also referred to as

"Age Replacement Policy."

Barlow and Hunter (1960) have studied this preventive maintenance

policy. They discussed the existence and uniqueness of the optimum

cycle T*, which is the time between two successive scheduled mainte-
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nance actions. Their objective is to maximize the limiting efficiency

(steady state availability) if the unit was replace at failure or at T

whichever occurred first. They have also shown that the optimum

maintenance time is the solution to an integral equation.

Barlow and Proschan (1965) have an equivalent model but their

criterion is to minimize the long-term expected average cost per unit

time, which is the expected total cost for a cycle divided by the length

of that cycle.

Glasser (1967) has obtained solutions to the age replacement

problem for Weibull, gamma, and truncated normal distributions.

Fox (1966) has used a total discounted cost criterion to optimize

the type I policy. He has shown that the optimum age of the unit T

is a solution to an integral equation.

Most age replacement policies presented in the literature consider

two costs for replacing failed and non-failed units. Scheaffer (1971)

extends the standard age replacement model by including an age-

dependent maintenance cost. This cost may reflect the increase in total

cost due to depreciation, wear, age, diminishing productivity or reduc-

tion in salvage value of the equipment. He proposed two cost functions

for which the failure rate may also be constant in order to find an

optimum policy I.

In practice, the maintenance is not necessarily the replacement of

the whole system, but is often the repair or replacement of part of the

system. This kind of maintenance action does not always renew the

system and the mean lifetime of the repaired system is usually less than

the new one. Tahara and Nishida (1973) proposed models in which the

system cannot recover completely after each repair. This notion has
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been used by Nguyen and Murthy (1981). They have studied policy I

and policy II with a basic assumption that, after each repair, the life-

time distribution of the system changes in such a way that its failure

rate becomes an increasing function of the number of previous repairs.

1.3 POLICY II

This strategy is applied to very expensive and complex equipment

such as computers and airplanes, and it is defined as follows:

Perform preventive maintenance on the system after it has

been operating a total of T hours regardless of the number of

intervening failures. Preventive maintenance is then re-

scheduled. When a failure occurs, it is corrected by a

minimal repair.

This strategy is also known as "Periodic Replacement with Minimal

Repair at Failure." The action of restoring a failed system to operation

without affecting its failure rate is called minimal repair. The system is

usually completely renewed after a fixed number of the periodic main-

tenance cycles.

Most preventive maintenance policies presented in the literature

have studied the type II policy together with policy I, including Barlow

and Hunter (1961) and Barlow and Proschan (1965).

Bellman (1865) and Descamp (1965) applied dynamic programming to

policy II described above.

It is assumed, generally, that minimal repairs performed, when

policy 11 is followed, have zero time duration. But Sivazlian (1973) has

generalized this model by permitting a random down-time duration for

each minimal repair. This random time has an arbitrary distribution.
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His criterion is to minimize the long-term expected total cost. He also

derives the necessary and sufficient conditions for which this policy II

is optimal.

Makabe and Morimura (1963a, 1963b, and 1965) and Morimura (1970)

have studied another similar policy (policy III) along with policies I and

II. Under policy III, the system is replaced at the Kth failure. The

intervening failures are corrected by minimal repairs. They have

shown the existence of the optimal policy III both with respect to

limiting efficiency and another criterion which they called the "1' I-

tenance Cost Rate." It is defined as follows:

[Cost per unit down time] x [expected fraction of down-time]

+ [expected cost of all repairs and replacements during a unit time]

Morimura (1970) has studied a more general policy (IV). Under

this policy, preventive maintenance is performed when at the time of

failure either the total operating time has exceeded t or when Kth

failure occurs. Other failures are corrected with minimal repairs. Note

that when K approaches infinity, the preventive maintenance is per-

formed at t and consequently we obtain the type II policy. When

t = 0, then the preventive maintenance is carried out at the Kth

failure and we lead to the type III policy.

As mentioned earlier, the works presented by Tahara and Nishida

(1973) and Nguyen and Murthy (1981) are of great importance in

studying policies I and II. The former introduces models in which the

system does not recover completely after each repair, and the latter

relates the repaired system's failure rate to the number of repairs.
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1.4 AN OVERVIEW

We consider optimization of schedules for maintenance or repairs

when two classes of maintenance strategies, namely I and II, are of

interest. These policies are said to be optimum if they minimize the

expected long-term average cost per unit time.

Under policy I, repairs are performed at failure or at Ti units of

time, measured from the (i-l)st maintenance operation, and replacement

occurs at tN defined by

N

tN 1 min (T. t T) (1.1)

where -Eis a random variable representing the failure time from the

most recent maintenance action. There is only one kind of repair

associated with this policy, by which the system improves but does not

recover completely. Our basic assumption is that tht lack of complete

recovery is due to the system's previously expended lifetime.

Under policy II, there are two kinds of repaih7s:

1. Minor repairs to restore a failed system to operation without

affecting its failure rate.

2. Major repairs to reduce the future number of failures.

Obviously, in this model the only repair that may be planned is

the major one by which the failure rate decreases but the system will

not become as good as new. The reason that the regeneration does not

occur could be based on the previous number of repairs, age, ineffi-

ciency of repairs, and many other factors. However, our main

assumption is that the system's age plays a significant role on the

recovery after a major repair. Here, major repairs are scheduled at

T 1 , T 2 ,. . T and replacement at
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N
t N I ITN (1.2)

i=1

The novelty here is that the failure rate after a maintenance

operation is a function of the system's previously expended lifetime.

This generalizes earlier work by Nguyen and Murthy (1981) on the

simpler case where the future failure rate depends on number of

previous repairs, but not on the times when they took place.

Our goal is to optimize both policies I and II, separately, by

finding a set of successive time intervals T 1 , T 2 ,. DT N and the number

N, where a replacement is made at t N given by relations (1.1) and (1.2).

These models are only applicable when the system's failure rate is

increasing with time. All of our results are valid when the underlying

distribution is Weibull, whereas most can be applied to a broad class of

increasing hazard rate equipments. The failure characteristic of the

system at the beginning of the ith time interval is described by a

conditional distribution function Fi(tli Oh), where eildescribes the

previous history of the system. Our contribution can be characterized

by letting i_1 represent the age factor affecting the system's failure

rate. Policies I and II are studied in Chapters 2 and 3 respectively.

Section 2.2 introduces policy 1, which is a generalization of "repair

at failure or at at time T, whichever comes first" to reduce the irregu-

larity of breakdowns, assumptions involving zero time duration for a

repair or replacement, and constant replacement. Repair and break-

down costs are also discussed in this section.

Since we assume that the recovery after each repair is not fully

achieved, function e.i is defined in Section 2.3 to relate the system's

age and the number of repairs to the failure rate. A formulation of the



long-term expected average cost per unit time for policy I is also found

in this section.

Section 2.4 contains a general f.,taulation of the type I policy as a

nonlinear programming problem (NPI) and a discussion on three special

cases:

1. Replacement at time T or failure, whichever occurs first.

2. The system ages rapidly or repairs are destructive (61>>6o).

3. The system ages slowly ( i-E1 is small)

A reformulation which is suitable to dynamic programming and its

computational efficiency is discussed in Section 2.5.

Section 2.6 is concerned with the state dependent model where the

state of the system is defined to be the number of previous repairs

performed on that system. In other words, after each repair, the new

failure rate will depend on the number of previous repairs caused by

either failure or planned preventive maintenance operation. A review of

this model, which was originally developed by D.G. Nguyen and Murthy

(1981), along with assumptions, uniqueness and existence of the optimal

solution and a computational algorithm are described in this section.

This computational algorithm becomes inefficient when the number of

time intervals in each renewal cycle is large. Lemma 2.1 and policy I'

will permit us to develop a heuristic procedure which is computationally

more efficient. This is achieved by finding a good estimate for N*,

the optimum number of planned repairs in each renewal cycle. A

numerical example for systems with Weibull lifetime distribution and an

application to lemma 2.1 are also presented.

Our work extends the maintenance models to an age-dependent case.

In other words, the amount by which recovery after a repair is incom-
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plete is related to the length of previous operating time. Section 2.7

contains two suggestions on how that age factor can be incorporated

into the analysis of policy I.

1. Since the system's age at the time of repair is a random

variable and, consequently, it will complicate the derivation of the

long-term cost per unit time, a simulation approach seems to be more

efficient to optimize the age-dependent type I policy. When age factor

after teit repair is considered to have the form

0.=1 + Efage at the time of the it repair}

where is a constant age deterioration factor, and it measures how fast

the system deterioriates with respect to its age.

2. To have a model that will be analytically tractable, we may

approximate the age by its expected value. To be specific, the age

factor in this case at the time of the ith preventive maintenance action

can be defined as

6. = 1 + E {expected age at the time of the ith repair}

where the age deterioration factor, E, is a constant parameter which

determines the relation between the expected age and the deterioration

level of the system.

Section 2.8 deals only with the simulation approach. A general

type I policy is reformulated such that the resulting expected long-term

average cost per unit time is consistent with the previous formulation

derived in Section 2.3. This mathematical relation is used to generate

the cost function by means of random numbers. Among various models

of this strategy, simulation is made of a case in which the age at the
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time of repair will determine the new failure rate. Also, its optimization

with respect to the expected long-term average cost criterion is dis-

cussed. Efficiency and reduction in computation time are obtained by

defining a relation among T1 , T 2 ,-..,T N and by estimating the optimum

number of preventive maintenance operations in each renewal cycle.

In Section 2.9, we develop an approximate analytical model for the

age-dependent type I policy. The approximation is done by replacing

the system's age, at the time of the i threpair, by its expected value.

A system of nonlinear equations which satisfy -the necessary conditions

of optimality will be derived. A procedure to compute gradients is

developed so that the optimum solutions can be found by applying a

numerical search technique. It is also shown that, when underlying

lifetime distribution is Weibull, computation of gradients can be more

simplified.

In Section 2.10, policy I is formulated in terms of steady state

availability.

Chapter 3 is entirely devoted to policy II and its optimalities.

Section 3.2 contains an introduction to policy II by which planned

major repairs are performed at Ti i = 1,2, ... ,N with minor repairs at

failures without disturbing the failure rates. The replacement takes

N
place at t N = 1 T.P

i=11
Different assumptions regarding the hazard rate allows us to define

two general models in Section 3.3. "Model A"l is applied when the

failure rate, after each repair, returns to the same value as at the time

of replacement but with a larger slope than if replacement had taken

place. "Model B"1 deals with systems for which, after each repair, the

failure rate declines with unchanged slope, but it does not necessarily

return to the point it started from.



In Section 3.4, a general mathematical representation of the

expected long-term average cost per unit time is derived for policy II.

Optimal policy II is the solution to a nonlinear programming prob-

lem (NPII) which is found in Section 3.5. First three special cases are

discussed.

1. Replacement at time T (constant) with minor repairs at

failures. A solution to this problem for Weibull lifetime distributions is

also obtained.

2. The system ages rapidly.

3. The system ages slowly.

In section 3.6, a dynamic programming formulation to type II

policy is denhned and its numerical computational efficiency is described.

To ensure the convergence of various optimum search techniques

applied to this problem, we investigate the existence of the minimum

point in Section 3.7. Along with defining some notations, relations

satisfying the necessary condition of the optimality are also derived.

Theorem 3.1 discusses the conditions under which the minimum point

can exist. Proper initial values for searching are obtained by using

Theorem 3.2.

Section 3.8 contains a review of the state-dependent model devel-

oped by Nguyen and Murthy (1981). This model assumes that the

number of repairs affects the future failure rates.

Section 3.9 defines two forms of failure rates by which the

system's age can be incorporated into the type II policy. One is called

the A-type model with the age factor represented as

i
0.i = 1 + I T (1.3)

j=1



-12-

The other is the B-type model with the age factor represented as

i
= IT

j=1

Section 3.10 is devoted to the optimality of A-type age-dependent

policy II. Necessary conditions for optimality are derived for both

general and Weibull distributions. Theorem 3.3 describes the order of

the optimal scheduled repair times when the underlying lifetime distri-

butions have the Weibull form. Other properties of the optimal solution

are exemplified.

The age-dependent policy II of type B and its optimality is found

in Section 3.11. The analysis involves the formulation, necessary and

sufficient conditions of the optimality. It is also shown that for a fixed

value of N, the optimal repair time is a solution to an integral equation.

Theorem 3.4 proves a useful inequality relating the optimum scheduled

repair times and the number of major repairs in each renewal cycle.

This theorem is then used to find a simpler form for the sufficient

conditions when the underlying lifetime distribution has the Weibull
,

form. The optimum number of the planned repair times N , is computed

in terms of optimum scheduled repair times, and it is used to obtain a

lower bound for N in terms of maintenance costs and the failure

distribution parameters (e.g. Weibull). Two analytical solutions are

derived for two cases of Weibull failure distribution.

In Section 3.12 the policy II is formulated in terms of steady state

availability.

The major results and general conclusions are summarized in

Chapter 4.



CH A PT ER 2

POLICY I

SCHEDULING MAXIMUM TIMES

BETWEEN REPAIRS

2.1 INTRODUCTION

This chapter deals with the optimality and the analysis of policy I

by which a repair is carried out at failure or at a planned repair time,

whichever occurs first. The emphasis is on the optimum schedules for

maintenance or repairs, in order to minimize long-term average operating

cost per unit time. This policy is defined in Section 2.2. A mathe-

matical function representing the previous history of the system and an

expression for long-term average cost per unit time are found in

Section 2.3. The problem is formulated as nonlinear programming and

dynamic programming in Sections 2.4 and 2.5, respectively. Existing

results on state-dependent models are reviewed and a related improved

computational algorithm is suggested in Section 2 .6. Sections 2.7-2.9

are devoted to the age-dependent model and its optimality by means of

a simulation technique and a suggested approximation procedure. The

problem is formulated in Section 2.10 in terms of steady state availability.

2.2 POLICY I

Simple equipment such as a car engine may break down from time

to time, needing repair to be restored to operation. Usually repair

actions for a system having an increasing (or possibly nondecreasing)
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failure rate cannot last forever, and at some point in time, replacement

becomes inevitable. It is perhaps justifiable to perform the repairs

prior to failures. To analyze this problem, a strategy called policy I

has received the most attention in the literature. The following is a

generalization of the type I policy.

Policy I. The system is repaired for the i th time in the

case of failure or after T i time units of continuing operation

(from the last maintenance action), whichever occurs first

(i<N). It is replaced when i=N. This process will be re-

peated indefinitely.

Using this policy contributes to the reduction of irregularity in

breakdowns by performing planned repairs before the system fails. A

discussion on this policy in a practical case will depend on considera-

tions not all of which can be incorporated into a mathematical analysis.

Therefore, the following general assumptions will be made.

1. Repairs are carried out instantaneously and there will be no

queuing problem.

2. Information about the state of the system (failed, not failed) is

obtained without any inspection. In other words, the system's state is

observable.

3. The failure time probability density function (p.d.f.) is known

after each repair action and when the system is new.

4. The system is subject to stochastic failures.

5. Distributions of failure times after each repair are not neces-

sarily identical.

We will make additional assumptions as the parameters of this model

are def ined.



Several different criteria have been considered to determine the

optimum planned repair times, among which minimizing the long-term

average cost and maximizing the limiting efficiency (availability) are

widely used. From the optimization point of view, these two criteria

are actually equivalent (see Section 2.10).

We consider an optimum policy I for which the long-term average

operating cost per unit of time is minimized. Each cycle, which is

defined to be the time between two successive replacements, consists of

N time periods (Ti. i=1,. .. ,N), i.e. Tiis the time between the (i-1)t

thand i repair actions.

In this model the maintenance costs consist of replacement cost

CR, repair cost Coo and breakdown cost CB for each failure. These

costs are assumed to be constant, even though, in practice, they might

well be functions of age, number of repairs, and other external factors.

if Co, CBP and especially CR are highly sensitive to the inflation

rate and other economic factors, then long-term total discounted cost

criterion seems to be preferable. In most situations, the costs can be

interpreted as expected values of corresponding random variables.

CO represents all costs caused by performing a repair, including

the cost associated with a constant repair time.

Breakdown cost CB consists of all additional costs incurred due to

failure. When planned repair is carried out, only C is incurred.

it is also possible to define CR CB and C0 as functions of time

to adjust with depreciation or wear. But as we said earlier, it is

assumed here that they are constant.

In the next section, a general type I policy is formulated.



-16-

2.3 POLICY I FORMULATION

A component or a system subject to stochastic failure can be

described by its failure (hazard) rate r(t)

r(t)dt = Pr[t<t<t+dtft>t] (2.1)

where c is a random variable specifying the failure time. The cor-

responding cumulative distribution function is

tF(t) = 1 - exp[-f r(s)ds] (2.2)

Let ei = gi(T 1,T2 ,...,Ti_l; , 2,...2 . 'it be a positive real

function to describe the past aging of the system up to the (i-1) st

preventive maintenance action. In this expression, Ti (constant

planned repair time) and ti (failure time) are measured from the most

recent repair or preventive maintenance. This allows us to formulate

the type I policy so that the failure rate is a function of age of the

system and/or number of repairs performed.

Failure characteristics of the system after the (i-1) st repair (or

replacement if i=1) can now be described by the conditional cumulative

failure distribution function Fi(tl~i_l) and the corresponding conditional

hazard rate ri(tlei_l), which is assumed to be strictly increasing in

T 1,T 2 ... -TN, t, and also in the number of repairs (i-1). Assume

that Fi(tlei_l) and ri(tlei_1 ) are both continuous and differentiable for

any positive value of the vector T = (T 1,T 2 .... T) and t.

In order to have a meaningful preventive maintenance policy, we

assume that after each repair, the system does not fully recover, and it

is more likely to break down than if a replacement had taken place

("repaired not as good as new"). This is achieved by making the

failure rate function after any repair satisfy

ri(tlei_ 1) ri_l(tl (i- 2 ) a ... a rl(tl0 ) (2.3)



-17-

rr

r, (0)

TN TI  T2 T3

Figure 2.1- Various Linearly increasing
Failure Rates in a cycle.

The function ri might depend on i-1, T.i, Ti..2.. ,T1 . Figure 2.1

illustrates this fact when the failure rate is linearly increasing. Note

that repairs will reduce the failure rates considerably such that

ri(01Oi 1) = ri_8(ei.2) = ... r l (O) (2.4)

During the ith period, the probability of a failure before the next

preventive maintenance, given that (i-1) repairs have been performed,

is expressed by Fi(tilei-), and the expected breakdown cost for a

cycle consisting of N period is

N
Total Breakdown Cost = C I F.(Tilei(5

i=1 ( 1

The expected total cost per cycle denoted by R(N,T) is found to be

N
R(N, T) CR + (N-1)C 0  CB N F.(Ti 1) (2.6)i=1
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where

= (T 1 ,T 2 ... ,TN)

To calculate the expected length of a cycle, we define the following:

i= Random variable with p.d.f. f(tlei_1 ) denoting the

failure time in period i, measured immediately after the

(i-i)st repair (or replacement for i=1).

T Scheduled repair time measured immediately after the

(i-1) s t repair (or replacement for i=1).

Xi  Age of period i, which is either Ti or Ti, whichever

occurs first.

Thus we have

Xi = min(iT i ) (2.7)

i
using this notation, one possible age function is 8. = 1+ El X.; where

j=1

>0 is an aging factor. The expected length of period i is computed by

Ti

Yi - E(Xi) = fo sfi(s[oi-l)dS + Ti'fi(s'Oi-i ) d s  (2.8)

Making a change of variables

s = U fi(sji_1)ds = dV

or

ds = dU Fi(sIOil) = V

and using integration by parts, we get

T.
Yi = TiFi(TiIei_) - fo Fi(sei1.. )ds + TiFi(Tilei-1)
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or Y = Ti[Fi(Tii-1) + i(TiJ ) A o Fi(sli-)ds

= T f Fi(slOi- 1 )ds

Ti  T.

= fo ds - fo'Fi(sli-1)ds

and finally

T.
Yi = fo ri(slei-1)ds (2.9)

Therefore, the expected length of a cycie denoted by L(N,T) is

expressed by

N N T.
L(N,;) - E( I X ) = oi (sIei- 1 )ds (2.10)

i=1 i=l

According to the renewal reward theorem [Ross (1970)), the

expected long-run average cost is the expected total cost during a

cycle divided by the expected length of that cycle. Thus the expected

long-term average cost per unit of time for policy I is

N
CR + (N-1)C 0 + CB I Fi(Ti19i_1 )

C(N,=) = R(N,_T) i=1 (2.11)
L(N,T) N T.

1 JoF (tleiol)dt
i=1 i

In the next section, optimization of preventive maintenance policy I

is given.

2.4 OPTIMAL POLICY I

Our goal is to find a set of positive time periods (Ti, i = 1,2,... ,N)

so that the expected long-run average cost per unit time C(N,T) is
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minimized. This can be expressed by the following nonlinear program-

ming problem (NPI):

Find N and T = (T1(N),T 2(N),...,TN(N))

to minimize

C(NT) = R(N,T) (2.12)

L(N,T)

subject to

T i  0 i= 1,2,...,N (2.13)

N >1 (2.14)

N integer (2.15)

First we consider three special cases:

Case I. No Repairs (N=1)

This case deals only with replacements, and repairs are not carried

out. If N=1, the C(N,T) will reduce to

CR + CBF1(T1)C(1,T 1) =  (2.16)

o1 F 1(t)dt
0I

By setting its first derivative equal to zero, we obtain the first

necessary condition for a minimum

T1,

CBf1(T1)fo F 1 (t)dt - F1(Tl)[CR + CBFI(TI 0 (2.17)

fl(TI)

Dividing both sides of (2.17) by r1 (TI) and replacing - with
r y(Ty)

rl(Tl) yields:
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G1T)~T 1  CR

G,(Tj) - r1 (T)fT, r)(t)dt - F,(Tl) R (2.18)

An optimum type I policy is obtained by T,(1), which satisfies

equation (2.18), and the corresponding minimum expected cost value is

C (1,T,(1)) = CBrj(Tj(1)) (2.19)

Barlow and Proschan (1965) and Barlow and Hunter (1959) have

considered a similar model in which they proved that optimal solution

Tj(1) may exist. Their discussion follows from the fact that the left-

hand side of equation (2.18) is increasing in T, provided hazard rate

r 1 (t) is increasing in t. Mathematically:

dG,(T 1 ) T,
--dT = rl(tl)f0 'F1 (t)dt + r,(T1 )T1 (Tl) - f 1 (T 1 )

f'  T , TI

r 1(T 1)f o F 1(t)dt f 1(T 1 )
= P 1(Tj) 0 + rl(T1) - ___-

TI

= r',(T1 )f o F 1 (t)dt > 0

The right-hand side of equation (2.18) is constant for any value

of T 1 . We conclude that C(1,T) has at most one minimum point. But

from (2.15)

C(1,Tj) as T, - 0

and

CR+C
C(I,Tl) R B as T1 -

" - . . ." . .. .. .. .. . . ... [ . . . . .. . l m . .. .. . .. . . ... .. , a m m
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where P, is the expected failure time. It was assumed previously that

C(1,T 1 ) is continuous. The two possibilities are shown in Figures

2.2(a) and 2.2(b).

In Figure 2.2(a), clearly, T1 (1) = , but in 2.2(b), there exists a

finite positive Tj(1) for which C(1,T,(1)) < C(1,ao).

Case II. Rapid Aging

In this case, the equipment deteriorates very rapidly and/or

repairs are destructive. For any age function ei > 1; (i.1) and 00 = 1,

the conditional failure rate may be defined as

ri(t~i_ 1 ) = 0ir(t) (2.20)

from which the related conditional cumulative distribution function is

expressed by

Fi(tlEi 1) = 1 - exp[-Oi f tFi~ t]_1.I  ri(s)ds]

1 - exp[-fo ri(s)ds] (2.21)

If ei_ 1 (i = 2,3,... ,N) is large, then

Lim Fi(tlOil) = 1 i = 2,3,...,N
ei-i

Clearly no planned repair must be scheduled, and the resulting

expected long-term average cost per unit time given by (2.11) becomes

- CR + CBF(T1)C(1,T) - T

fo ?rl(t)dt

which is the result of Case I.
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C(IT,)

Figure 2.2 (a)

C(0IVT

T(im

Figure 2.2 (b)
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Case III. Slow aging

This situation deals with the case in which, after each repair, the

system becomes as good as new. Mathematically, this is described by

ri(tlei_1 ) = r(t) (2.22)

Combining this relation and equation (2.11), we get

N
CR + (N-1)C 0  C B I F(Ti)

C(N,T) = "= (2.23)
N T
Y f0 ' (t)dt

i=1

Taking its derivatives and equating them to zero gives

N T. NC f(Ti=I f ° F(t)dt - T(Tj)[C + (N-1)C + C I F(Ti)] 0
B i=1R 0 Bi=1

for j = 1,2,...,N (2.24)

which can be simplified to

N T. N CR + (N-1)C o
r(T.) I fo F (t)dt - I F(T.) 0 (2.25)

i=l i=l i CB

The minimum expected cost per unit of time is obtained by dividing
N Ti

(2.24) by r(T I f F(t)dt
i=1o

C(N,T ) = CBr(T (N)) for all j and K (2.26)

which means

r(T.(N)) = r(TK(N)) for all j and K (2.27)

Since the failure rate r(t) is assumed to be an increasing function of t,

we have

T.(N) = TK(N) = T for j and K (2.28)



-25-

And now equation (2.25) can be written as

T CR + (N-1)C o
Nr(T)fo (t)dt - NF(T) = CB (2.29)

Therefore, the optimum repair time for each period T is the solution to

T CR + (N'I)C° O hN
G(T) 4 r(T)f o "F(t)dt- F(T) NCB h(N)

(2.30)

The right-hand side of (2.30) is increasing in N if

CR + (N-1)C o  CR + NCO  (2.31)
NOB > (N+I)CB

which implies

CR  > C 0 (2.32)

Obviously if CR < Co , then h(N) is a decreasing function of N.

Since the failure rate is increasing, the left-hand side of (2.30) is also

increasing in T. To show this, we compute

= r'(T)foT F(t)dt + r(T)'F(T) f(T)f(T

r'(T)fT F(t)dt + T (T) - f(T)o (T)

r'(T)f (t)dt a 0 (2.33)

If replacement cost CR is greater than repair cost C, then h(N)

decreases as we increase N, and consequently from (2.33)

T(N+1) < T(N) for all N (2.34)
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which implies

C(N+1,T) < C(N,T) for all N (2.35)

[See Eq. (2.26)]

Therefore, if the replacement cost is more than repair cost, it is

optimal not to replace the existing system as long as it is needed. The

optimum repair time, T(N), is the solution to

T -Cor(T)f T F(t)dt - F(T) = _B (2.36)
CB

CO
where C- is the limit of h(N) as N approaches infinity.

B
If the replacement cost CR is less than the repair cost Co , then

h(N) is decreasing in N and

T(N+I) < T(N) for all N (2.37)

and from (2.26), we conclude

C(N+1,F) < C(N,T) for all N (2.38)

Thus, the optimum number of scheduled repairs in this case is

zero and only replacements are carried out. The procedure is again

the same as for Case I (N=I).

Note that the breakdown cost CB affects the above strategies by

changing the length of T(N) and, as a result, the value of C(N,T),

but it does not affect the optimal value of N. This is because a reduc-

tion in CB will result in a larger T(N). [h(N) is decreasing in CB.]

When CR = Co , at the time of failure or planned repair, we can

either replace the system or perform a repair.

Case III, which is also a special case of a model developed by

Nguyen and Murthy (1981), does not seem to be appropriate in prac-



-27-

tice, because the system's age and number of repairs are ignored. In

order to have a nontrivial solution, we admit that the generalized

policy I is applied when replacement cost CR is greater than repair cost

CO

Now we turn our attention to the general form of (NPI) and employ

Dynamic Programming to reformulate it.

2.5 DYNAMIC PROGRAMMING FORMULATION

The objective is to select a set of positive repair times =

(T 1(N),T 2 (N),... ,T3 (N)) so that the expected average cost per unit

time given by

C(N,T) - R(NT) (2.11)
L(N,T)

is minimized where R and L have been defined by (2.6) and (2.10). It

is well known [Barlow and Proschan (1965)] that T, which minimizes

C(N,T) will also minimize a related problem given by

-,(p) = R(N,/) - PL(N,T) (2.39)

Where p = p, the minimum of C(N,T) is such that

Xo0) = 0 (2.40)

Concentrating upon a single cycle, we define the following recur-

sive equation

.* K *
XK( K-1) = Min{C K +.1K+I(0,eK)) (2.41)TK
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CK is the cost incurred during each period, and it is equal to

TK

CK = (1-K)CR + IKCo + CBFK(TKI"K-l) - P Jo K(teK-l)dt

for K = 1,2,...,N (2.42)

when

1K = 1 if 1 S K < N

IK = 0 if K = N

We now define 6 K as being proportional to the system's age at the

time of the most recent repair. This can be written as a transition

equation

eK = 0 K_1 + Min(-KTK) K 0 (2.43)

e = 1

where E is a multiplier to determine the deterioration rate with respect

to age. eK, which is a random variable, has the following distribution

OK  = 8 K-1 + ETK with probability T(TKIeK-1)

= OK-1 + EtK  with probability F(TKIeK_ 1 ) (2.44)

The boundary conditions to (2.41) are

* *

1N1~e8N 0 (2.45)

and

A (0, o ) = 0 (2.46)

In most cases it seems unlikely to find an analytical solution for

this problem. This is due to complexity caused by transition equation

(2.43) and 1. As an example, consider a system in which the failure
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characteristic follows the Weibull distribution. In this situation, finding
,

the distribution of 6K requires numerical calculations. 1* is found at the

last stage and its different values must be kept at each stage. It is

most likely that carrying out these calculations will require a lot of

execution time and storage space, and the results will lack precision.

2.6 STATE DEPENDENT MODEL

We define the state of the system to be the number of repairs

performed. A mathematical representation of this model is

ri(tlei_I) = ri(t) (2.46)

where i represents the number of repairs. This case describes a

situation when the failure rate function increases with the number of

repairs as well as time since the most recent repair, but the system's

age at the time of repair does not play any significant role in its future

performance. This problem has been studied by D.G. Nguyen and

D.N.P. Murthy (1981).

From equation (2.11), the expected cost per unit time for this case

is

N
CR + (N-1)C o + CB I Fi(T i )

C(NA) N NT. (2.47)

I f$o Fi(t)dt
i=1

As Nguyen and Murthy (1981) have shown by differentiating

(2.47) with respect to the Ti (i = 1,2,...,N), the optimal preventive

maintenance ages satisfy

ri(T i ) = r,(Tj) ; i = 2,3,.. N (2.48)
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and

N T. (N-1)C o + CR
I [r1 (t,)f0° 

3 T(t)dt - Fi(Ti)] = CB (2.49)
i=1 B

They have proved that under the following assumptions

i) ri(t) is strictly increasng to infinity (in t)

ii) ri+1(t) k ri(t), t > 0

iii) ri 1 (O) = ri(0)

the following are true:

1. For a fixed value of N, the optimal policy I exists and Ti(N);

(i = 1,2,..., N) is finite, unique and decreasing in i.

2. There exists an optimal N for which

min[NIAC(N,T > 0] N * max[NIAC(N, ' ) 0]
N N

where AC(N,T) = C(N+I,T) - C(N,T)

Nguyen and Murthy also proposed a computation algorithm as

follows:

i) Set N = I

ii) Obtain Ti(N); i = 1,2,...,N using equations (2.48) and

(2.49)

iii) If T(N) a T(N-1), got to step (v)

iv) Set N = NI and go to step (ii)

v) N = N-1; compute C(N*,T) from equation (2.47)

(Note: step (iii) is omitted for N = 1.)

They have suggested that step (ii) be carried out by solving

identities (2.48) and (2.49) simultaneously. However, applying any

optimum seeking technique, such as gradient method, directly to equation
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(2.47) also provides satisfactory results. Either technique seems to

require numerical integration when underlying lifetime distributions are

assumed to have the Weibull form. Consequently for a large N, the
,

above algorithm is not likely to be efficient. For instance, if N = 49,

then the last iteration of the algorithm alone requires (50)(.2)(15)/60

= 2.5 minutes of computer time for numerical integration (assuming that

each numerical integration needs .2 seconds and step (ii) will converge

after 15 iterations). In other words, to carry out this algorithm when

N = 49, approximately one hour of computer time is spent to integrate

numerically.

The following lemma will help us find an approximate value for N*,

which will be useful in later numerical calculations.

Lemma 2.1

For constant pi; (i = 1,2,... ,n), a and b (b > 0), the integer

function

n + bn n = 1,2,... (2.50)
SPi

i=11

has at least one global minimum if

P1 k P2 a . PN a ... > 0 (.1

Proof. Let " Pn and from relation (2.50) we have

n
+ b( . pi - npn+l)AP -a~jN+1 i=1 (.2

n (2.52)
i=1 i~
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Note that if a > 0, and ji+1 = i for all i, then Ap < 0, which
,

implies that pn decreases as n increases or n = o. If a < 0, then
n

Aon > 0 for all n. Since Ipi -npn+1 > 0 and Pi P i= 1,2,... ni=1~ ~~ nl "
,

(from 2.52) and consequently n = 1. For a > 0 and b > 0, first we

will show that if Aon > 0, then Aon+1 > 0. Identity (2.52) is positive

when
n

-apn+1 + b( Y pi - nPn+l) > 0 (2.53)
i=1

nT i - nn+

or i=l > a (2.54)
Pn+1 5

Similarly AoN+1 > 0 if and only if

n+1
I Pi - (n+)p n 2i=1 > a (2.55)

Pn+2 
(.

which can also be written as

n
Ii - n~n+2 + Pn -i=1 > a (2.56)

Pn+2

We can increase the left-hand side of inequality (2.54) via re-

placing pn+1 by pn+2 and adding pn+1- Pn+2 > 0 to the numerator.

This will result in inequality (2.56) and, hence we conclude that Ao > 0

implies Apn+1 > 0.

Now we have to prove that on < 0 implies Ao < 0. For on < 0,

it can be shown that

An . . . .. . . . . . . [ ... . . . . . . . . . . . . .. 11 1
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n p Pi pn2n1 -nPn*2i=l 1 +~ n+l~ I~n+2 a (.7
< a(2.57)

Pn 2 E

The inequality holds if we decrease the left-hand side. Replacing

in+2 by p n+1 yields

n
I p. - nn

i=1 (2.58)IPn+l

which means Ao < 0 and the proof is completed.

One may define the following policy:

Policy I': The system is repaired for the ith time in the case

of failure if i < N1. It is replaced when i = N'.

In fact this strategy is the same as policy I, but planned repair

times have been selected so large that failures occur prior to the

scheduled preventive maintenance. The long-term average cost per unit

time is obtained by letting T i -, - (i = 1,2,...,N) in identity (2.11)

CR - CO + (Co+CB)N'
C(N',) = - N' (2.59)

SPi
i=1

where pi is the expected failure time in the ith period. It has been

shown by Nguyen and Murthy that for a state-dependent model with the

assumed failure rate function properties, pi _ i+ 1 > 0; i = 1,2..... In

fact, this attribute exists in age and state-age-dependent models. This

follows from the fact that whenever ri(tleil) is less than ri+l(tle.), one

can see easily that i(tlOi ) < r(tleil) and this leads to pi+l <

1 1-1
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Setting CR-Co = a, Co+CB = b, and N' = n, we get equation

(2.50) given in lemma 2.1, and hence we conclude that optimal policy I'

exists. There is a unique N' which minimizes the expected cost per

unit time (2.59) except the case in which two or more values of N' will

result in the same amount of cost C(N',o). In other words, function

(2.59) is either convex or strictly convex function of N'. It is important

to note that the behavior of C(N,-), when pi+l = pi (policy F), and

special case III (policy I) are exactly the same. In both midels,

N N' when CR > C0 , and for CR < CO, no repair should be

scheduled (N = N' 1 1).

Calculation of N' is simple. Ti's have been eliminated, and there

is no numerical integration to evaluate. In most cases, it can be done

by hand. But the question is how well N is approximated by N' .

Our simulation study shows that N' is a good estimate for N, and

due to the lack of preventive maintenance actions, the average cost for

strategy I' is higher than policy I; consequently, N' < N This

allows us to use N' as a starting value for N. Employing this heuristic

procedure will save a large amount of computer time by avoiding the

computation used to evaluate the iterations 1,2,...,N'-1.

Numerical Example 2.1

Referring to the numerical example given by Nguyen and Murthy

where C = 5, CR = 15, CB = 15, and failure times follow the Weibull

distributions, i.e.

Xia+l

fi(t) = t at exp(- 1,2...,N
1 1
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with constant shape parameter a = 1 and scale parameters Al 1,

= (1.5) i-1; i = 2,3,... ,N. The optimum type I policy is obtained by
* *)

T,(3) = 0.936, T 2(3) = 0.624, T3 (3) = 0.416, N = 3 and C(N, )

28.08. But our heuristic procedure, policy I', yields N' = 2. By

selecting initially N = 2, we could have avoided more complicated compu-

tations required for N = 1. The results are shown in Table 2.1.

N' C(N',w)

1 33.85
2 31.06
3 31.80

Table 2.1. Optimal Policy I' (N' 2)

Numerical Example 2.2

This example illustrates a case for which calculations of N' can

further be simplified. Suppose each failure (and consequently repair)

affects the expected lifetime of the following period such that

n-i--+) = (1- i'-) i= 1,2,...,n (2.60)n2 0 n2 0

where p, = Note that pi is decreasing in i and the expected length

of the ith time interval is less than the expected (i-1) s t lifetime.

The equation (2.50), for this example, becomes

a + bn a + bn
n n-

i1 n2 o

We may treat n as a continuous variable and differentiate pn with

respect to n. Setting that derivative to zero yields

(2a + b)n 2 - 2bn - a = 0 (2.61)
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The positive solution to this quadratic equation is

n b = F2+ab+2a2 (2.62)n - 2a+b (.2

Setting a = CR-Co and b = (Co+CB), we get

n CoB + 4 2Co+CR (2CR+3Co)+CB(CR+Co+CB) (2.63)
2CRCo+CB

The optimum N' is either [n] or [n]+l, depending on the value of

C(N',o). [n] denotes the largest integer less than or equal to n.

2.7 AGE-DEPENDENT MODEL

We are now considering a model that is applied to situations in

which repairs do not reflect any increase in the system's failure rate.

But, due to the length of operating time, recovery is not fully achieved

by performing a repair. According to our notation, ei becomes an age

factor that relates the system's age at the end of the ith period to its

future performance. For simplicity, we assume that the conditional

hazard rate for each period is proportional to the age factor i_1 at the

beginning of that period

ri(tli I ) = r(t)ei (2.64)

This implies that

0i-1
r(tjei_I ) = [i(t)] (2.65)

and 0 i1 is restricted to

ei >1 , if i > 1 (2.66)

=I, ifi=1
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In fact, e is a random variable defined by
1

8i = gi(XlX2,...,xi 1 ) (2.67)

where gi is an increasing function of X1 , X2 ... ,Xi_1 (Xi is given by

equation 2.7). An appropriate example of gi is

i
= 1+ E 7IX. (2.68)

j=1

which satisfies the conditions given by (2.66) and 2.67). E is a

positive parameter which determines how fast the system deteriorates

with respect to its age. A simulation study seems to be appropriate to

analyze this age-dependent type I policy. We may also approximate

relation (2.68) by

i
ei = 1 + 6E y (2.69)

j=1 J

where

yj - E(X.) (2.70)

This way, the failure rates will depend on the expected value of age as

a constant rather than age as a random variable.

In the next two sections, the age-dependent policy I is formulated

in two ways, one via a simulation approach and the other by approxi-

mation, using equations (2.69) and (2.70) instead of (2.68).

2.8 SIMULATION APPROACH

A key step in the analysis of the age-dependent type I policy via

simulation is to find expressions for total cost per cycle, R(N,T), and
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length of a cycle L(N, '), in terms of random variables involved. For

this to be the case, let

I 1, if failure time < Ti'. =1 (2.71)

0, otherwise i 1,2,...

This is equivalent to

Pr{6i=l} = Fi(Tij~i_l) (2.72)

and

Pr{6i=0} = 1-Fi(Tili_l) (2.73)

According to policy I, breakdown cost CB is incurred if the system

fails to operate before the scheduled repair time. Given this notion,

and using the definition given for 6i (2.71), the total cost per cycle,

R(N,T) (random variable), is expressed by

N
R(N,T) = CR + (N-1)C o + CB 1 ai  (2.74)

i=1

A random variable representing the length of a cycle is

N
L(N,T) = . Xi

i=1

N
= I min(-iT i ) (2.75)

i=1

or by employing 6i , it can be shown as

N
L(N,T) = I [6ic. + (1-6i)Ti] (2.76)

1--1 " i
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Let R(i)(N,T ) and L(i)(N,T) be the result of the ith simulation

experiment and let us assume that n such experiments are to be per-

formed, where n is a fairly large number ( 50 n 1 100). Then the

long-term average cost per unit time consistent with relation (2.11) is

obtained by

n W~)(

I R '(N,)
C(N,T) = i=1 (2.77) j

i=1

As one might expect, the above formulation is a general repre-

sentation of type I policy, and it is applied to state-, age-, or state-

age-dependent models. But generating a random variable, i' differs

for each case.

Among the most often used random number generators is the

multiplicative, congruential method. But as Marsaglia (1968) has pointed

out, this technique provides unsatisfactory results when sequences of

random vectors are to be generated. If K-tuples (RNI,RN 2 , .. ,RNK),

(RH 2 ,RN 3 ,.. .RN K+),... of random numbers generated by this method

are viewed as points of a unit cube (K dimensions), all the points will

lie in a relatively small number of hyperplanes. This property indicates

that multiplicative congruential method is inadequate for our type I

policy. Marsaglia and Bray (1968) have suggested the use of a com-

posite generator, which mixes three congruential generators: one to fill

nj locations, one to select a location from the nj, and the third is used

for good measure.

The following algorithm can be used to generate n random variables

having the distribution F(tlei.1 ) = 1-[TF(t)]) ' 1, which is appropriate

for the age-dependent type I policy.
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Step 0: Set =1;i 0

Step 1: Set i = i+1

Step 1: Generate Ti , having distribution F(tIei_) l-[F(t)I

using random number RNi

Step 3: If i = N, stop; else go to Step 4

Step 4: Compute Xi - min(ri, Ti) 1i

Step 5: Compute i = ei_1 + EX i

Step 6: Go to Step 1

As an example, consider a model in which the underlying distri-

bution is Weibull, i.e.

fi(t1i.1) = Xoe1i_jtexp(- o+, i = 1,2,...,N (2.78)

where

ei. 1 = 1 + 7 min( i,T i )  (2.79)
j=1 1

and e 1. Step 2 is performed by

1-

-(ot+l)ln(l-RNi )
o 1 (2.80)

Calculation of 6i can be done by either looking at Min(i, T i ) or if

RN i < F(Tilei-l) (2.81) !

Then 6i = 1, otherwise 6i = 0.

Another problem that can play a significant role in finding the

optimal policy I is selecting T 1 , T 2 ,...,TN. Obviously, simulating all

possible values will lead to inefficiency. However, it is reasonable to
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say that the maximum length of period i (a good system) should be

longer than the one of period (i+l) (not as good a system). Our

simulation study also proves this fact when the lifetime distribution is

Weibull. Given this notion, it is reasonable to reduce the dimensionality

of the search by assuming a proportional relationship among the Ti . We

may define Ti+1 = aTi; (i = 1,2,...,N-1; O<a<l), and then find the

optimal T1 , N, and a. This method is quite simple, but for a large N

and a<<l, there is a K such that for i>K, the value of Ti is no longer

significant. However, it can also be shown by numerical examples (e.g.

Weibull) that there is not a constant proportionality among optimal times

T1 ,T2 ,... ,TN. In the Weibull case, we obtained better results by

letting the reliability of the system in period i+1 be related to the

reliability of period i by a constant value B, i.e.

Pr{t > Ti+l} = [Pr{t > Ti}]B (2.82)

Ti+1  T.

or e-fo dt - e dt (2.83)

This becomes

T T.
o iM ri+(tlei)dt = Bfo ri(tIei_l)dt (2.84)

For a Weibull distribution with hazard rate ri(tlei 1 ) = hoei- 1 tc, identity

(2.84) leads to

a0  a T0+ BA0  e T? +l (2.85)
3i i+ -01+1 i-i 1
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or
1 1

Ti+ (Bei) T = A( 1) T1  (2.86)

1

where A B +  In most cases, the optimal A seems to be close to one

(.95 1 A _ 1).

Numerical Example 2.3

Assume failure times of a system follow the Weibull distribution

given by (2.78) and (2.79) with Xo = 1, t = 1, and E = .2. The

maintenance costs are CR = 15, Co = 5, and CB = 12. The optimal

solution obtained by employing the simulation approach (by assuming

that the relation 2.86 satisfying among the Ti) is N 7, A = 1,

T = (0.9 0.83 0.78 0.73 0.71 0.68 0.67) and C(7,T ) = 15.08.

where C(7,co) = 18.23. Figure 2.3 shows the behavior of C(N,T ) as N

is incremented. The result is a convex function, and it has a global

minimum.

In a manner similar to O'e state dependent model in Section 2.5,

the computations may be reduced by finding an estimate for N. This is

achieved by simulating a similar but not as good policy, namely letting

*, (6i = 1). Equation (2.74) becomes

R(N,T) = CR + (N-I)C ° + NCB (2.87)

and equation (2.75) will change to

N
L(N, 7) = -. (2.88)

i=1 1

-----------go.
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C (NT) =I
CR= 15

18 CO= 5
CB= 12

S=.2

x

x
xx

15 5 x x
23456789 N

Figure 2.3 - optimal Policy I using simulation
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C(N,oo) CV =I

22. CR= 15

X CB=12

20.

xx
x x

x
18. x

x x

1 2 34 56 7 89 N
Figure 2.4 -The behavior of C (N,0)
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because of the higher cost in this case. The optimal N (say N's) is

less than the one of actual policy I, and N' may be used as a starting

value for N. Figure 2.4 illustrates the behavior of C(N,w) as N is

incremented (for the numerical example 2.3). It has also a global

minimum. The estimated number of scheduled repairs for this case is
,

N' = 4. By starting from N = 4, computations required for N = 1, 2,

and 3 could have been replaced by fewer computations needed to obtain

N'

2.9 APPROXIMATION

Although simulation provides a flexible and significant approach to

the age-dependent type I policy, nevertheless, one may wish to have

rather an approximate analytical formulation to this problem. For this

to be the case, we let

i i
ei = 1 + l E[min(j,T)] = 1 + Ejlyj (2.89)

1 j=1 0'Ij1

where yi is the expected age of the period defined by

T.
Yi = 'o F(tlei-1)dt (2.90)

In other words, the failure rate at the beginning of each stage

depends on the expected current age rather than the actual age.

Therefore, the expected cost per unit time (2.11) can be written as

N
CR + (N-1)C 0 + CB . F (T Ile. (.1C(N,T) :R(N,T) N 11(.1

= N ().91L(N,T) i=1 yi
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By.
Since = 'F(Tileoi 1 ) , (2.91) can be rewritten as

1

N 1y i
CR + (N-1)C 0 + CB I (l- -)

C(NT) N = i (2.92)

i-1

According to our assumption r(tlei 1  - r(t)ei 1 and hence

T.

r(tlei1 ) = exp[-folr(t)ei dt]

= 6i-iT. e. .

[exp(-f 0 r(t)dt)] 1-

= [ M(t I i-I (2.33)

or

i-1

r (tlei _) = (t) j=l (2.94)

which is an indication of reduction in reliability as the expected age

increases and E will determine the magnitude of that reduction.

To find an expression satisfying the necessary condition of the

optimality, denote the first partial derivatives of relation (2.92) by

C.(NT) C(,Ti) j = 1,2,... ,N (2.95)

and setting Cj(N,T) to zero yields

N 82 yi N N yi[ N BTi
-C BB. 1 , - *£ -IR + ( 1C + cB 1 -(1

B NBIT i i=1 O R 0 B

(2.96)
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which can be simplified to

N 32yi  Nayi  N N ayi  CR+(N-I)C o
-i D aTT / i= =1 -i Ci j 1 = i 1 i= G aB

j = 1,2,...,N

Identity (2.96) can also be written as

N ay1CR+(N-l)Co+CB 1 (1- 8 -) N a2y. N ay.
=1= CB i aTaTi  / 7- (2.98)

Iy 9= i i=j
i=1

(j = 1,2,.. .,N).

The left-hand side is just the minimum expected cost per unit

time. When j=N from equation (2.90), we have

ayN

aTN = F(TN eN-1) (2.99)

and
82 YN2 = -f(TNIeN.) 

(2.100)
N

hence the right-hand side of (2.98) is

RHS B NN1 = CBr(TNIeN) (2.101)
'F(TN {eN-1)

Therefore, the minimum expected cost per unit time can be expressed by

C(N,T ) = CBr(TNIeN-1) (2.102)
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The above computations can also be used to simplify one of the

equations (j=N) given by (2.97) to get

N N CR + (N-1)C 0
r(TNIN-1). Y i - I F(TNI6N- 1 ) CB (2.103)

i=1 i=1B

Evaluating (2.97 for j=K and K+1 and subtracting the results, we get

another system of equations for the first necessary condition of the

optimality.

(N a2yi N 3y. N a2y. N ay.'
I /- I T5

8i~lTK 3Ti =1T- aaT /i=K+ K+ i K+1 i=K K i i=K

K = 1,2,...,N-1 (2.104)

Despite the fact that equations (2.97) or (2.104) along with (2.103)

provide a way to obtain the optimal solution, they seem to be quite

tedious and difficult to solve. One might prefer to apply an optimum

search technique (e.g., conjugate gradient) directly to identity (2.91)

and have a more convenient and efficient method for the evaluation of

optimal age-dependent policy I. For this to be the case, we must find

expressions for gradients C.(N,T), j = 1,2,... ,N. This in return

requires the derivations of

RT(NT) 3T(N) j = 1,2,...,N (2.105)3T.

and

L.(N,T) = ST- J = 1,2,...,N (2.106)Ia3T.

To find Rj(N,T), it is simplest to proceed by induction. This will

result in
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j-1

rn-i

Rj N, T) = CB [i+ 1 =Yi)f (T i ) 1 (T) il

i=1

m-1

- E Z ( . 3T. )L(Tm) J lnF(Tm)
m=j+1 i=j

N
( X ( ) = 0 when j = N) j1,2,...,N (2.107)

m=j+1

y, is the first term in L(N,T) which involves T. Hence

N ay i
L= (N, )T j = 1,2,... ,N (2.108)

The partial definative of YK with respect to T i is obtained from

relation (2. 90)

K-1

-' K LF (t) 1 jl ln (t)dt for i = 1,2,...,K-1

j=i aT i

i-11 1I+ E Iy~j=

= [(T i )  j=1 for i = K

=0 for i = K,K+I,...,N

K = 1,2,...,N (2.109) V

In order to represent the above formulas in a rather simpler

fashion, let

aYK
dKi = i= 1,2,...N (2.110)

.,..r. 
.
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and also let

VK £ foK[r(t) j' yj lnF(t)dt (2.111)

K =- , , . ,

Since lnr(t) 0, then VK will be positive. Thus (2.109) can be re-

written as

K-i
d Ki I E(d)VK for i 1, 2,..,K-1

j~i foJi=

0 for i = K+1,K@2,. . .,N (2.112)

As one might expect, we can now form a matrix d, whose elements

dKi are related by relation (2.112). This matrix is used for calculations

of both Ri(NI T) and L.(NJ).

Matrix d is shown by

d 0 0 ... 0

d~l d22 0 . . . 0

d3 l d3 2  d3 3 . . . 0 (2.113)

dNl N2  dN3 . . NN

Equation (2.108) can be calculated by using matrix d

L.(N,T) = I d.
Ij~ j 1

=sum of column i (2.114)
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Calculation of Ri(N,T) also requires partial summation along each

column of matrix d. After obtaining Ri(N,T) and Li(N,T), the

gradients are simply expressed by

Ri(N,T)L(N,T) - Li(N,T)R(N,T)
C(N,T) = [L(N,T] (2.115)

As an example, let us assume that the underlying lifetime distri-

bution is Weibull given by

ko~iil
t a +1

fi(tiei-1) = XOi-ltexp(- U+l ) (2.116)

a > ; X0,t > 0

where

i-i
8 i 1 = yj (2.117)

j=l

From identity (2.107), R (N,T) for this case isi

0+1
Ri(N,T) = CB[oilTixp(

B a+11
E o N m-1 -0oTi. 1

d.. )Tamexp
a~ =i+l ji mU+

i = 1,2,...,N (2.118)

and from (2.111), Vi is calculated to be

Xo T I  o~i 1t a+ .

V 4 Tf exp(- a+i0 )t+ldt (2.119)

'koei t a + l

Let - Ua + l

a+1
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which implies

t = ~1)c"T U ; dt 0'+ ( il)c+1 dU

Also let

W (xoei~ (2.120)

and finally

V1  (0 W w) -1 fjji exp(-Ua'.)Uor~1 dU (2.121)0o

W. is also used to evaluate y

T. xoO1 ta+1

yi= f. lexp(- - 1 )dt (2.122)

which can be shown as

y1  W exp(-Uoa+l)dU (2.123)

From (2.117) and (2.120) we have

W-Or+1 U+1 = X0 EAO

I - Wi- i -iT (i-1 "-) -- i y -

U+*1 NO

W1 (2.124)
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The following computation procedure summarizes the results

obtained in this section to evaluate the gradients at T* when the under-

lying failure rate has the form

ri(tlOi) = Oi1 lr(t)

i-1

and the age factor is approximated by ai_ - 1 + E I Yj
j=1

STEP 0: Set i = 1, 0o = 1
T.

STEP 1: Calculate Yi= fo (tlei-l)dt

i
STEP 2: Compute ei = 1+ 1 y. = i_1 + Yi

j=1
STEP 4: If i < N, set i = i+1 and go to Step 1; else go to Step 5

STEP 5: Calculate matrix dij; ij = 1,2,...,N using eq. (2.112)

STEP 6: Calculate Ri(N, T); i = 1,2,... ,N, from equations (2.107)

and (2.11) using the results obtained in Step 5

STEP 7: Compute Li(N,T); i = 1,2,...,N from equation (2.114)

STEP 8: Calculate R(N,T) using equations (2.92), (2.110) and the

results obtained in Step 6

N
STEP 9: Calculate L(N,/) = I yi

i=1

STEP 10: Evaluate Ci(N,T) using equation (2.115) and the results

obtained in Steps 6 through 9

Note that if the underlying lifetime distribution is Weibull, then

the following changes are made to reduce computation time.

1. W. is calculated from either (2.120) or (2.124) before Step 2 is

evaluated, and it is used to compute Vi from equation (2.121) and yi

from equation (2.123).

2. Ri(N,Tr) is evaluated by using equation (2.118).
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Generally any optimum search technique, when N=1, requires an

initial interval of uncertainty (XL ,XR) We may define the lower limit

by a time before which there would be a small probability that the

system could have failed, i.e.

Pr{zt ;S a} ;S 6 (2.125)

For the Weibull distribution, we have

e a+1

or finally 1

a ; o S XL (2.126)

With a similar argument, we find that

1

Xo ] XL (2.127)

For 6 = 0.001, equations (2.126) and (2.127) become

1

XL AO (2.128)

1

and XR = 6 9(a+) 1 (2.129)

If the optimal solution converges to XR, then from Figure 2.2(a)

we can suspect that optimal TI(1) is infinity.

Numerical Example 2.4

We now consider the numerical example 2.3, but we employ the

approximation method to solve it. The results are shown in Figure 2.5.

.. , l. _ .. .. . .. ......... -
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X0:
C(N,T) O =I r

CR= 15~Co= 5

18 CB = 12
=.2

x

17

x

X x
x

x x x

15 1
I 2 3 4 5 6 7 8 9 10
Figure 2.5 - optimal policy I using simulation
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The optimal policy I in this case is: N* = 6,7 with C(N,T*) - 15.49 and

IT (.96 .90 .85 .81 .78 .74) or = (.94 .89 .83 .78 .75 .72 .69).

We have used the conjugate gradient technique and the Davidson,

Fletcher, and Powell method. Obviously, the conjugate gradient tech-

nique needs less computation time. The result of lemma 2.1 is also

applied to this case, and zomputations could have been reduced by

obtaining an estimate for N (say N' ). This is achieved by finding

the minimum of C(N,,).

C(N,w)
N Simulation Approx.

1 21.45 21.45
2 18.63 18.53

N3 17.63 17.91
N' 4 17.54 17.84

5 17.62 17.96
6 17.99 18.17
7 18.23 18.43
8 18.49 18.69
9 18.88 18.97

Table 2.2. Comparison between simulation and
approximation when o .o

Table 2.2 shows that N' = 4, which could have served as an initial

value for N and iterations 1, 2, and 3, could have been avoided. The

expected value of each period in this case is

a 1

=( )+1 (ei(x-) --f) (2.130)
i-i

where ei-1 = 1+ E . j.
j=1

Table 2.2 compares the limiting behavior of C(N,w), as obtained by

simulation, to the values that result from the "mean value" approxima-

tion (numerical examples 2.3 and 2.4).



-57-

2.10 AVAILABILITY

Throughout our discussion about policy I, we assumed that the

durations of times for maintenance and renewal are negligible. In a

sense, this does not seem to be justifiable. But by interpreting the

costs CR, CO and CB as the expected replacement, maintenance, and

breakdown times, we may formulate the type I policy in terms of the

steady state availability (limiting efficiency) A(N, 1).

N T.7- $o' 'i(tlei-1)dt

A(N, 
i=1

NN T.
CR+(N-I)Co+CB I Fi(Ti8.=)+ 7- Fi(tle i i)dri=1  . - 1i= o -

= [1 + C(N,T)]

Therefore, maximizing A(N,T) is equivalent to minimizing C(N,T).



C H A PTER 3

POLICY II

SCHEDULING FIXED TIMES

FOR MAJOR REPAIRS WHEN

INTERMEDIATE MINOR REPAIRS

ARE ALLOWED

3.1 INTRODUCTION

This chapter is concerned with policy II and its optimalities when

the major repairs are scheduled and minor repairs are carried out when

failures occur. Minimizing the long-term average cost per unit time is

used as a criterion to optimize this strategy. A general definition of

the type II policy is found in Section 3.2. Two different failure rates

(A and B types) are defined in Section 3.3. The problem is formulated

in terms of nonlinear and dynamic programming in Sections 3.5 and 3.6

respectively. Necessary and sufficient conditions of optimality for this

problem are derived in Section 3.7. Section 3.8 contains a review of

the state-dependent model. Sections 9-11 are devoted to various age-

dependent models and their optimalities. A steady state availability

formulation is found in Section 3.12.

3.2 POLICY II

Unlike policy I, which is suitable for simple equipment as des-

cribed in Chapter 2, policy II is applied to expensive, complex, and
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multi-item systems (e.g., computers, airplanes, bulbs in a factory,

etc.). In maintaining a large and complex system over an infinite time

span, the failure of a single component unit does not necessarily call

for replacing the entire system. Instead, the system can be restored

to operation by replacing that single unit. Generally, any maintenance

action of this type is called "minimal repair," after which the system

failure rate evolves as it would have if no failure had taken place. A

system having an increasing failure rate, after a certain amount of

operation time, is subject to renewal and/or overhaul (major repair).

Our objective is to determine the optimum maintenance time intervals

(time between two successive major repairs) and renewal cycle or simply

a cycle which is defined to be the time between two successive replace-

ments. For a complex system and when the first major repair is a

replacement, a strategy known as policy 11 has received the most

attention in the literature [Barlow and Proschan (1965)].

The following is a generalization of the type II policy:

Policy II. The system is repaired for the ith time at age

i
ti = ~Tj, provided i < N; it is replaced when i = N. In the

case of failure between maintenance actions, a minimal repair

is carried out. This process will be repeated indefinitely.

Our assumptions made in Section 2.1 regarding zero time duration

for replacements, major and minor (minimal) repairs, lack of queuing

problem for maintenance, system's state being observable, and having

increasing failure rates are also assumed for policy II.

This strategy considers two kinds of repairs:
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1. In the case of failure, the system can be restored to operation

by minimal repairs, after which the failure rate evolves as it would

have if no failure had taken place.

2. Planned major repairs in T 1,T 2 ,...,T units of time from

the most recent corrective operations (major repairs) and then replace-

ment at age tN, where ti is defined to be

i
ti  I T (3.1)

j=1

The maintenance costs in this model are defined as CR for each

replacement, which is performed at age tN' CM for each major repair at

t1 ,t2 ,... tN and C0 for each minimal repair in time interval (ti lti);

i = 1,2,...,N. These costs are assumed to be constant despite the fact

that they might well be functions of age, number of repairs (major

and/or minor), and many other factors.

3.3 MODELS A AND B

After each major repair that is carried out to reduce the hazard

rate (and hence the number of minimal repairs), the system does not

completely recover, and breakdowns are more likely to occur than if a

replacement had been performed. Mathematically, this can be described

by a failure rate function after the (i-1) St major repair, r.(t),

satisfying

ri(til+At) Z r il(ti. 2+At) a ... k rl(to+At) (3.2)

The function ri might depend explicitly on i-1, ti 1 , ti2 , ... ,

Figure 3.1 is a graphical representation of relation (3.2). In this case,

major repairs will reduce the failure rates such that
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rq(t)

ti t2 t3 t

Figure 3.1 -Linearly increasing hazard rates
for Policy I (Model A)

x indicates a failure

. I
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ri(ti.) = ri_ ... = r 1 (to) (3.3)

We refer to this model as "Model A." Another illustration is shown

in Figure 2.1. When relation (3.3) is ignored, one can define "Model B"

for which a typical example is represented in Figure (3.2).

3.4 PROBLEM FORMULATION

Let ei = gi(T 1 ,T 2 . .. ,Ti_) be a positive real function to describe

the past history of the system immediately after the (i-1) s t preventive

maintenance (major repair) action. This definition will permit us to

formulate the type II policy when the failure rate depends on the age of

the system and/or number of repairs.

The failure characteristic of the system can be expressed by the

conditional failure distribution function Fi(tlei_l), which is related to

the conditional hazard rate ri(tlei) and Fi(tl0i_l) is assumed to be

strictly increasing in T,T 2 ,...,Ti_1 , t, and possibly (i-1). We assume

that Fi(tl6i_1 ) and ri(tlei_l) are both continuous and differentiable.

The expected total cost per renewal cycle, denoted by R(N,T), is

computed by adding the replacement cost, (N-i) major repair costs, and

the expected minimal repair cost caused by failures. Based on our

notations defined earlier, we have

N
R(N,T) = CR + (N-I)C 0 + CM I E[N(t i ,ti)] (3.4)i=1

where N(ti 1 ,ti) is defined to be the number of failures (and hence the

number of minimal repairs) occurring in (til,ti), and

T (T 1 ,T 2 ... ,TN) (3.5)

N)...............
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r~r( t)

r, W

ti t4 t3  t
Figure 3.2 - Linearly increasing hazard

rates for Policy ]I (Model B)

x indicates a failure
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By definition, the probability of a failure occurring in (t,t+dt) is

ri(tiei 1 ) + 0(t). Barlow and Hunter (1961) and Barlow and Proschan

(1965) have shown that the expected number of failures in (til,ti) can

be expressed as

ii t -t i 1  [ e i 1 ) d t

T.
= JIo ti(xIei- 1 )dx

Zi(Tie 1i_1 ) (3.6)

This, of course, follows from the fact that the minimal repairs

during time interval (ti_, ti) do not disturb the system's failure rate.

In other words, after a minimal repair, we assume that the failure has

never taken place.

Thus, by using equation (3.6), we can rewrite the identity (3.4)

as

N Ti
R(N,/) = CR + (N-1)C o + CM I fo ri(tlei-1)dt (3.7)

The expected length of a cycle is the total age of the unit

N
L(N,T) = tN = Ti  (3.8)i=1

The expected long-term average cost for this model is just the

expected cost during a cycle divided by the expected length of a cycle.

Therefore, the expected cost per unit time is obtained by

N T.
CR+(N 4 I)C+CM I fo ri(tlei-)dtC(N, ) =R(N,T) R 03.=1

L(N,T) N
I Ti

i=
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Note that the hazard rate is affected by age and/or repair only

after each major repair, and it is not disturbed by minor repairs which

take place before the next major repair.

We now turn our attention to the optimization of preventive main-

tenance policy II.

3.5 OPTIMAL POLICY II

In order to find an optimal policy II, we seek a set of positive

time intervals (Ti; i = 1,2,...,N), which minimizes the expected long-

term average cost per unit time given by (3.9). Mathematically, this is

expressed by the following nonlinear programming problem (NPII).

Find N* and T = (T(N),T 2 (N),... ,TN(N))

To minimize:

C(N,) = R(NT) (3.9)

L(N,T)

Subject to:

Ti a 0 i = 1,2,...,N (3.10)

N a 1 (3.11)

N Integer (3.12)

In a way similar to (NPI) given in Chapter 2, we have three

special cases to consider.

Case I. No major repairs (N=1)

When major repairs do not result in any improvement or the only

possible repair is the minimal repair, then N = 1. Barlow and Hunter

(1960) and Barlow and Proschan have studied this model. They intro-

I
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duced this notion as "periodic replacement with minimal repair at failure."

For N = 1 equation (3.9) yields

T,
C(1 ) C R + C M fo r 1 (t)dt (3.13)T, (.3

Setting its first derivative to zero, we get the first necessary

condition for a minimum

T,

CMTri(TI) - [CR+CMfo r 1 (t)dt] 0 (3.14)

or GjT)T, CR
G1(T)= _ Tlr 1(TI) - r(t)dt= (3.15)

Therefore, the optimum time interval between replacements is

obtained by Tj(1), which is the solution to equation (3.15). The

minimum cost is

C (1,T,(1)) = CMr,(T,(1)) (3.16)

Barlow and Proschan (1965) have sh wn that T,(1) exists and it is

unique. This can be seen by differentiating the left-hand side of

(3.15) to get

dG,(T,)

dT - Tr 1(T,) (3.17)

which is positive when r(t) is increasing in t. The right-hand side of

(3.15) is constant and hence T,(1) is unique. Figure 3.3 illustrates a

typical expected cost function, C(1,T,).

As an example, suppose the failure rate has the Weibull form

r,(t) = Xot t > 0 ; a > 0(318)

(3.1j
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Equation (3.15) can be written as

CcT+1 o =+1 R (3.19)

or

oa  a1 C R- Tf' 1 = C (3.20)

and the optimum time period between replacements is given by

1

Ti(1 = c~)R I(3.21)

The resulting minim'im expected cost is obtained by using identity (2.16)

1
at+1

C (1,Tl(1)) = =(,I)O C~ (u o)r (3.22)

Case II. Rapid Aging

This case is similar to Case II described in Chapter 2. It is

applied when major repairs have a destructive nature or the system

deteriorates very rapidly. As mentioned in Chapter 2, the optimal

number of major repairs is N = 1. Note that, in this case, minimal

repairs are performed for continuing operations, and they do not

disturb the failure rate.

Case III. Slow Aging

Among the two kinds of repairs, minor repairs do not affect the

system's failure rate, but major repairs will result in improvement. This
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case assumes that after each major repair, the system becomes as good

as new. A mathematical representation of this model is described in

terms of hazard rate

ri(TIi_I) = r(t) (3.23)

and the resulting long-term average cost per unit time given by relation

(3.9) becomes

N T.
CR+(N-1)Co+CM f f 'r(t)dti=1

C(N,T) N (3.24)
IT ii=1l:

Setting its first derivatives to zero to get the first condition of

optimality

N N T.
CMr(Tj) I Ti - [CR+(N-1)CO+CM T f r(t)dt] = 0 (3.25)i= i=1 "

j = 1,2,... .,N

N N T. CR+(N-1)C °or r(Tj) I T .- I f r(t)dt =(3.26)Si=1 i= CM
j =1,2,... ,N

From (3.25), minimum cost is found to be

C(N,*) = CMr(Tj(N)) j = 1,2,...,N (3.27)

which yields

r(Tj(N)) = r(Ti(N)) i,j = 1,2,...,N (3.28)
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Since r(t) is an increasing function of t, clearly

Tj(N) = Ti(N) = T i,j 1,2,...,N (3.29)

Combining (3.29) nd (3.26), we get

CR+(N-1)CoTR0NTr(t) - T r(t)dt - (3.30)
f0

Thus the optimum time interval between two major repairs (or possibly

replacements) is obtained by T, which is the solution to

GT T CR+(N-1)Co

fC r(t)dt - h(N) (3.31)

Differentiating G(T) with respect to T yields

-G = Tr'(T) ' 0 (3.32)

The right-hand side of (3.31), h(N), is increasing in N if

CR >Co (3.33)

In an argument similar to the one given for policy I (Chapter 2, special

Case III), we conclude the following:

1. If major repair cost C0 is more than replacement CR, then

the optimum number of preventive maintenance actions is N* = 1 (the

same as Case I).
,

2. If major repair cost is less than replacement cost, then N =

and the optimum time interval between major repairs is T, which is the

solution to

ST Co

Tr(T) - r(t)dt = (3.34)
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3. The optimum number of planned major repairs is independent

of minimal repair costs, CM. But larger time interval for each scheduled

major repair is obtained by smaller CM.

4. When CR = Co, then N* can be any positive integer number.

The above results are somehow obvious. But for state, age,

and state-age-dependent policy II, we assume that CR > Co . This

allows us to investigate the existence of nontrivial optimal solutions.

Case III is a special case of state-dependent model, developed by

Nguyen and Murthy (1981), which we shall briefly discuss in Section

3.7.

Before considering some more general models, a reformulation of

the optimal policy II, using the dynamic programming technique, is

presented.

3.6 DYNAMIC PROGRAMMING FORMULATION

This problem is analogous to the one discussed in Section 2.4.

Equations (2.39), (2.40), (2.41), (2.45), and (2.46) still hold. Identity

(2.42) will change to

TK
CK = (I']K)CR+IKCo+CM fo r(t IKl)dt - PTK (3.35)

where

nK = 1 if 1 ; K < N

= 0 if K = N

A typical transition equation can be defined by 0 K when it is pro-

portional to the system's age at the time of the most recent major repair

OK - 8 K1 + TK K 0

eo =1 (3.36)
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where E is a constant to determine how fast the system deteriorates.

This relation is especially suitable when hazard rate has the form

ri(tjei.) := ,i_,r(t )  (3.37)

i- 1,2..

which reflects the A-type model defined in Section 3.2. For B-type

model 60 can take on any nonnegative value.

When failure times follow the WeibuU distribution, obtaining optimal

policy II by means of dynamic programming requires numerical compu-

tations. At each stage, an equation involving parameters like eK and p

must be solved. Bounds on eK and p may reduce inefficiency. A more

efficient method is to apply a search technique (e.g. gradient method).

For this to be the case, the nature of optimal solution(s) must be

known.

3.7 EXISTENCE OF MINIMUM

We have seen that there always exists a minimum when N = 1.

The following notations are used to investigate the existence and the

nature of any stationary point for (NPII) when N k 2.

Let the first and second partial derivatives of total cost per cycle,

R(N,T), be

R.(NT) 8 i = 1,2,...,N (3.38)

and Ri.(N,T) - 2RiNj ij = 1,2,... ,N (3.39)

Also let

Ci(N,T) - aCN i 1,2,...,N (3.40)
ai
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and C (N,T) = i,j = 1,2,...,N (3.41)

be the first and second partial derivatives of C(N,T).

For rK(tIeK), since the subscript represents the state of the

system (number of major repairs performed), we employ superscripts to

distinguish the first and second partial derivatives. Thus

(i)(tI  rx(tlex-l)

r K )(t K.1 ) = ____T iG- i = 1,2,...,K-1 (3.42)
S K) rK(ti K1)

r j)(T (tK) _ 3Ti Tj i,j = 1,2,...,K-1 (3.43)

Note that rK is independent of TKTK1,. .. ,TN.

To minimize C(N,T), we set its derivatives equal to zero

Ri(N,T) R(N, T)
Ci(N' ) - N N = 0 (3.44)

IT ( I T) 2

j=1 j=1

i =

The first necessary condition for minimum is obtained by

N
Ri(N,T) I T. - R(N,) = 0 (3.45) I

or

Ri(N, ) = R(N,T) = C(N,T) (3.46)N
I T

j=1
i = , .. N

which gives

Ri(N,T) = Rj(N, T) i,j = 1,2,...,N (3.47)
Li|
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Therefore, the optimal solution is such that the change in total expected

minimal cost per cycle will remain the same when both Ti and T. (i)

are incremented by one unit. From (3.7) Ri(NT) is found to be

N T
Ri(N/lr) = CM~r(TjIeilj) + I f rQ')(tj6 B)dj (3.48)

j=i+1 foj j1t

i

N
Note that 1 ( ) 0 when i = N.

j=i+l

The minimum long-term average cost per unit time can be

expressed in terms of the failure rate at the end of the last stage by

using relations (3.48) and (3.46) when i = N.

C(N,T*) = CMrN(TNI e N1) (3.49)

One can substitute (3.48) and (3.7) into equation (3.45) to get

SN T.

N T.
CR- (N-1)C o - CM I fo r (t. = 0 (3.50)

j=1 1

which can be simplified to

N T. N

i(Ti ji.1)  + I fo( (i) (tie .M)dt 5T)
Irj=i+ l j =1 J.

N T. C R+(N-I)C o0II f=1 rj(tlej-1,)dt - M (3.51)
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Setting i N yields

N N T.
rN(TNIeN. I ) I T. - I fJ r.(t ejl)dt CR+(N)C° 52)jl j=l C

Combining (3.47) and (3.48) leads to

ri(Til eIi) - rj(Tjlej 1) =

N TK(j) N TK (
=7-fo r K (tIOKl)dt - KI 10  rK~)(tloKl)dt (.3

K=j+1 K-i+l

i,j = 1,2,...,N

(3.53) along with (3.52) constitutes a system of N simultaneous, non-

linear algebraic equations with N unknowns which can be solved to

obtain the optimal solution(s). This is also achieved by solving (3.51)

but with more calculations.

To evaluate the second partial derivatives, we define K = Min(ij)

and m = Max(ij) for each pair of (ij) to obtain

K)(T + N Tn
Rij(N,') = CM era-) fo r0 n-l)dt

] M~m mnm J n--m+l r
(3.54)

k,j = 1,2,...,N

N
againnI ( ) 0 when m = N. Cij(NA) is found by using eq. (3.44).

nm+1 i

NRij(N,T) I Tm + Ri(N,T) R R(N,T)

Cij(N, = m=l N

( I T m)2
m=1

N
2[Ri(N,T) I Tm - R(N,T)]

m--lN (3.55)

( I Tm )3
m1 m
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Sufficient conditions for minimum are considerably complex if we

deal with Hessian matrix

H [Cij(N,T)]
ij

where Cij(N,T) is given by (3.55). But these conditions can be sim-

plified if we evaluate H at a stationary point. Since (3.45) and (3.47)

will hold for the optimal solution, we can substitute them into the

equation (3.55) to get

1)1

_.(, Ri(,*) R!

Ci(NN _ (3.56)I Tm(N) L

m
m=I

The following analysis is used to discuss the sufficient conditions,

for which the N-dimensional function C(N,T) is optimal [Kiepert (1910)].

Let the set of determinants IDil; i - 1,2,...,N be

R 11  R 1 2  ... R

L L L

R21 R22 ... R2i{Dif = -f (3.57)
L L L

R ii R2 R- Rii

L L L

Then we have the following

1. 1 DiI < 0 for i = 1,3,... and 1Dil > 0 for i = 2,4,... indicates

the presence of a relative maximum at *

2. IDil > 0 for i = 1,2,... ,N represents a minimum at T
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3. Faildre to satisfy either of these two conditions indicates the

presence of saddle point.

Due to the differentiability of R(N,T) and C(N,T) with respect to

TIT2,..,T , we have
Ii 11

Cij(N,T ) = Cji(N,T )  (3.58)

and Rij(N,1) = Rji(N,T) (3.59)

Define

ID~I = (L*)iIDi [  i= 1,2,... ,N (3.60)
*

Since L > 0, we can simplify the second order optimality condition

by means of iD!I. In other words, any relation that satisfies I Dij will

also satisfy ID!I.

R1 1  R ... Rii

IDil = R2 1  R22 ... R2 i  (3.61)

Ril Ri2 .R.. ii

Theorem 3.1.

Under the follo, ing conditions:

HI: ri(tlei_I) is strictly increasing in T,T 2 , .. ,Ti_ and t

H2: r(iJ)(tIeml)- 0 for al i, j and m V
C(N,T) has a positive relative minimum with respect to Tj in the

interval (0,C), and the solution to the first necessary condition
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Ri(N,T) C(N,T) (3.46)

cannot be a relative maximum.

Proof. H2, (3.54), and (3.61) imply that ID I > 0, and hence the

relative maximum point cannot exist. C(N,T) is a continuous function

of Ti; i = 1,2,...,N; and it approaches infinity as - 0 or - o. Note

that C(N,T) may possess a saddle point.

The preceding theorem allows us to employ various optimum search

techniques to find the minimum. The next theorem is useful for finding

proper initial values for T1 ,T 2 ,... ,TN.

Theorem 3.2

If (i) ri(tlei_1 ) is increasing in TI,T 2 ... ,T N  and t, and

(ii) rm)(ti)= rn)(tiE 1 I) for m = 1,2,... ,i-1 and n = 1,2,...j-1,

then failure rates evaluated at optimal Ti are ordered according to

ri(Ti ei. 1 ) I rjC'.,1 I 1 ) ; i > j (3.62)

Proof. Without loss of generality, we let j = i-i, and from (3.53)

and hypothesis (ii), we get
Ti)

ri(TiOei 11 ) - ri-l(Ti-ei 2 ) = J r i)(tlei ) dt (3.63)

Condition (i) implies that the right-hand side of (3.63) is positive

and hence

riTiei 1 ) >ri_,(Ti_l I (i- 2 )  i = 1,2,...,N

As an example for which conditions of Theorem 3.2 satisfy, con-

sider the Weibull failure rate

5I
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ri(tfli 1) = ,oi1ta  a 1
i-i

i_ = 1 + EIT.j=1 j

Note that rim) = (n) = Eta; a 1.

So far, we have studied the general policy II. Now we turn out

attention to state- and age-dependent type II policy separately.

3.8 STATE-DEPENDENT MODEL

In this case of policy II, the state represents the number of major

repairs performed. The failure rate at each stage is an increasing

function of the number of major repairs already carried out and the

time from the most recent major repair. Mathematically

ri(tlei_ I) = ri(t) t > 0; i = 1,2,...,N (3.64)

From (3.9), the long-term average cost per unit time is found to be

N T.
CR+(N-1 )CO+CM 1 f o ri(t)dt

C(N,T) =N i1 (3.65)

IT.
i=1

D.G. Nguyen and D.N.P. Murthy (1981) have studied this model for

both policy I and policy II. They have shown that these two models

have similar behaviors. Their results are summarized as follows:

1. Differentiating (3.65) with respect to ti and equating it to zero

shows that the optimum preventive schedule times satisfy

ri(T i) = r 1 (T 1 ) i = 2,3,...,N (3.66)

N N T. CR+(N-l)C (
and r 1(T 1) i Ti - 1 f"lri(t)dt = RN ° (3.67)

i=•CM
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and the resulting minimum cost is

C(N,T*) = CMri(T i ) (3.68)

2. Assumptions (i), (ii), and (iii) made in Section 2.5 will guar-

antee the existence and uniqueness of an optimal N and optimum planned

major repair time intervals Ti(N); i = 1,2,... ,N. For a fixed N, Ti(N)

has been shown to be decreasing in i.

3. When failure times are assumed to be given by Weibull distri-

butions

fa > 1 •t > 0 (3.69) 

Then Ti(N) can be found analytically by letting

(3.70)

which yields

(N-I)C +CR  1/(a+)
T,(N)= L

C ak 1 i,(a+l) ]
i=1

and

Ti(N) = qiTl(N); i = 1,2,...,N (3.71)

4. Nguyen and Murthy have also shown that the computation

algorithm used for policy I (see Section 2.5) can be applied to policy I,

except that here Step (ii) is computed by solving (3.66) and (3.67),

and Step (v) is obtained by (3.65). But our heuristic procedure to find
*approximate N for Policy I cannot be used for policy IT.
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3.9 AGE-DEPENDENT MODEL

Unlike policy I in which the age at the time of repair was a

random variable, here the age of the system is known and constant

when a major repair is performed, and it can be represented by

i
t i = T. i = 1,2,...,N (3.72)

j=l }

where tN indicates the replacement time. We consider two types of

age-dependent policy II as follows:

1. One corresponds to "Model A'l defined in Section 3.2. In this

case, the hazard rate at the beginning of each stage is given by

ri(tli_1 ) = ei_r(t) i = 1,2,...,N (3.73)

t a 0; eo0 l1

As mentioned earlier, ei-1 is an increasing function of T1,T 2 ,...,Ti_ 2 .

2. In the second model, the failure rates have the form

ri(tIi_l) = r(t) + 0 i_1 i = 1,2,...,N (3.74)

t0 ; e oO

which is a particular case of "Model B."

3.10 MODEL A

The age factor for this case may be defined as

i
ei = 1+ ti = +E1T. (3.75)

j=1 }

where E is a positive parameter which measures the degree of deteri-

oration as the system gets older. Note that for a new system, 60 = 1

and the failure rate (3.73) is described by r(t). From (3.9), we

conclude the long-term average cost for unit time
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N T
CR+(N-1)C+CM 8i -l1 olr(t)dt

C(N, 7) = N (3.76)
IT i
i=1

The derivative of ri with respert to T. in this case is

rI')(tlej 1) = Er(t) j 1,2,...,i-1 (

= 0 j =i,i+l,...,N

which can be substituted into relation (3.51) to get the first necessary

condition for minimum

N T. N N T.
[ri(Ti)ei_1 + E I f0Jr(t)dt] I T. - eI0.f r(t)dt

j=i+v j=1 j=l

CR+(N-1)CO
(3.78)

i = 1,2,.... ,N

Equation (3.53) becomes

r(Ti+,)ei - r(Ti)ei = i+

1 - Efo r(t)dt (3.79)

As an example, consider a system whose failures follow the condi-

tional Weibull distributions

-etp(- i (3.80)

i =1, 2,. .. , N eo = ; t a: 0; a a: 1
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with the corresponding conditional hazard rate

ri(tIli_1 ) = ,oi-1t  i = 1,2,... ,N (3.81)

where ei is given by (3.75). In this case, C(N,T) has the following

form:

CR + (N-I)Co + C o N rn-i
- (i+ E I T.)Tm+li

C(N,T) = m1 1=1 (3.82)

. T.
j=l

and equation (3.79) will change to

(i+ E 1T T )TO = (1+ E 1 (3.83)
j=1 +1 i+j=iJ

i =

These are N-i nonlinear equations. The Nth equation is the result

of (3.78) when i=N:

N-i N N m-i +. CR+(N-I)C0
(1+E 1 T )TN I T a+ 1 (I+E7 T.)Tam = N(3.84)

j=( N j=l m=1 j=1 "oCM

Thus, one way to obtain the optimum solution is to solve (3.83)

and (3.84) simultaneously for T1,T 2 . ... ,T N . But according to

Theorem 3.1 saddle points, but not a relative maximum, are also pos-

sible solutions. The following theorem may help us to distinguish

minimum point from saddle points.

Theorem 3.3

If the underlying distribution is Weibull with an increasing failure

rate and scale parameter

i-1
X, = AoOi-1 = o(I+ E 7 T.) (3.85)j=1
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Then the optimal scheduled repair times, Ti' for policy 11 are ordered

as

T1 kT2 a... ;TN (3.86)

Proof. Consider two arbitrary positive numbers a and b. Let

C a C(NT)IT i a, Ti+ 1 b

and

Cb C(N,T)IT b, i+~1 ~a

where each T1 in C aand Cb are respectively the same for #~i, M.-. It

is desired to show that for any a > b, we have

Ca<Cb (3.87)

N
In relation (3.76), we can see that the total age 7 T. and e.(j<i

0=1
and j>i+1) remain unchanged after interchanging the values of T.i and

T+1 Subtracting Cb from C ayields

_CMD

C a -Cb - N
I T

j=1

where D is defined to be

D = .O i~ d b

-4 ~r(t)dt - (0 11+ E b)Jar(t)dt

= Efaf~r(t)dt -bf-ar(Ot)
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It is sufficient to prove that D < 0. Setting r(t) = Kote, we get

D [... aa+ 1  b aa+l = ab (ba-aa)a+ a+1 U+1

but we assumed that a > b, a 9 1 and hence D < 0, which implies

(3.87).

Another way to find the minimum of C(N,T) is to apply an

optimum search technique. This in turn requires analytical expressions

for gradients C1(N, ). From (3.48), we have

N T.
Ri(NIf) = CM[Ieilr(t) + E 7 fo r(t)dt] (3.88)

j=i+l

i

and for Weibull case

N E N
1 + T.)TO+ 7- a+'] (3.89)

j=1  j=i+l

i

Ci(N, ) can be calculated by

ciN,) Ri(N,T)L(N,T) - R(N,T)Li(N,T) (3.90)
[L(N,T)] 2

i

To find the second partial derivatives of R(N,T), let m max(i,j) and

hence

Rij (N,T) = ECMr(T m ) ;ij

(3.91)
= CMei~lr'(T i ) ;i=j



-86-

Note that conditions H1 and H2 given in Theorem 3.1 are both

satisfied.

Numerical Example 3.1

Assume that the failure time of both the new and repaired system

have Weibull distributions given by (3.80) with parameters a-Xeo =1.

The maintenance costs are: CR- 15.0, Co-1.0, and CM=0.3. We applied

the gradient method to C(N,T) (equation (3.82)). The optimum number

of major repairs per cycle is N =8 with the minimum expected cost per

unit time of C(N ,T )= 2.88. The optimum major repair times are

T* = (7.92, 0.88, 0.83, 0.80, 0.77, 0.74, 0.72, 0.70)

Figur3 3.4 illustrates the behavior of the C(N,T ) as N is incre-

mented. It is a convex function and its minimum is unique.
*

In our numerical examples, the convexity of C(N,T ) with respect

to N seems to be a sure possibility. In addition to numerical example 3.1,

Figure 3.5 also illustrates this property, but sufficient conditions and

proof have yet to be found.

Other observations in all numerical examples we have studied are

as follows:

, N
1. The optimum renewal cycle's age, t = Ti(N) is an increasing

function of N (Figure 3.6). i=1

2. The optimum time periods are such that

Ti(N) a Ti(N+1) ; i = 1,2,...,N (3.92)

One sufficient condition that certainly must be considered is the

fact that the major repair cost, Co, is less than the replacement cost

CR•

R '.. .. 1 1 I . ...... . . ~ l nr. . . . ... . . . . . t: 
-

. .. . . .. . . . . . . .1 ..
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CR=15

C (NIT) Co :1

3.0. x

x x
2.95. x

x

x

x x

2.85.

2.80.
2 4.68 10Q12 14t1618 20 N

Figure 3.4 - The behavior of the minimum
cost function on n is
incremented (Policy.U -A)
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C(NtT)Co5

8.0. 135

7.5.

7.0..

6.5..

6.01
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In order to reduce computations, initial values for T,,T 2 ,...,TN

seem to be helpful.

This is achieved by using Theorem 3.2. For instance, in the

Weibull case, the relations (3.62) can be written as

r(Ti+l)ei > r(Ti)ei_1  i = 1,2,... ,N-1 (3.93)

Setting r(t) = X0t , we get

AoT'+lei- k oiOi.
i+0 1 1-1

orT i  i = 1,2,... ,N-1 (3.94)

where e. is given by (3.75).

As an example, consider the numerical example 3.1. The optimal

solutions for N=1 and 2 are shown in Table 3.1.

N C(N,T) T1 (N) T2 (N)

1 3.00 10.00 --

2 2.96 9.48 0.97

Table 3.1

Initially, we used T 1(2) = 10.0 and from relation (3.94), a reasonable

estimate is T 2 (2) = 0.91, which seems to be close to 9.48 and 0.97

respectively.

Finally, two reformulations of the age-dependent policy II are

presented without any analysis. Despite their additional difficulties

caused by the extra number of variables and constraints, some results

can be obtained more easily by means of interpretation of the Lagrange
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multipliers. Our objective is to show that they do exist, but no attempt

will be made to derive equations satisfying optimal solutions.

The first formulation introduces the age factor at the time of

repair as a constraint by letting

CMei_1 = Ai_1  ; i = 2,3,... ,N (3.95)

Thus, the expected cost per unit time (3.76) can be written as

N T.
CR+(N-1)Co+ I A i 1ifo r(t)dt

C(N,T) = N (3.96)

I Ti
i=1

This cost function is to be minimized in the following nonlinear

programming problem

Find: N ,T1, T2 .... ,TN,AA2, ..,A

To minimize: C(N,T) (3.96)

Subject to: CMOi_1 = Ai_1  i = 2,3,... ,N (3.97)

T 0

N >1

N integer

The Lagrange multiplier can be used to analyze this problem.

Mathematically, this is equivalent to the one we discussed previously.

Lagrange multipliers associated with constraint (3.97) are found to be

T.

fo r(t)dt
-a- N i = 1,2,...,N (3.98)

IT
j=1
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The last formulation deals with the following ratio

Ti Ti
Pi N tN  (3.99)

IT. N
j=l

ei can be expressed as

i
= 1 + Et N Y. (3.100)j=1 }

The long-term average cost per unit time is given by

N i-1 13tNf
CR+(N-l)C°+CM 1 (1+ ETN I )fo "r(t)dt

R Mj=i1 m 0
C(N,T) = (3.101)tN

and the resulting nonlinear programming problem is

Find: N ,102** .. N , tN

To minimize: C(N,f) (3.101)

N
Subject to: I Pi 1 (3.102)

i=1

a 0

N ?. 1

N integer (3.103)

3.11 MODEL B

The age factor for this model may be defined as

i
e= E IT. i = 1,2,... ,N; a 0 (3.104)

j=1 
"
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and the failure rate for each time period is

i-1
ri(tlei.1 ) = r(t) + E I T. i = 1,2,... ,N (3.105)

j=1 

.

t, 0

where rl(tei1 ) = r(t).

Figure 3.2 is an illustration of this case when failure rates are

linearly increasing. The long-term average cost per unit time is found

by combining (3.9) and (3.105).

N T N i-1
CR+(N-1)Co+CM f_ ir(t)dt+ ECM I (T i I T.)

i=1 i=2 j=1 '
C(N,T) = N (3.106)

IT
j=1

Taking its first partial derivatives and setting them to zero, we get:

N N N T. N j-1+ EI Tm ] IT.- IJr(t)dt - El7. (T I Tmi j=1 i j=1 j= m=2 M

CR+(N-1)C o- C l i= 1,2,...,N (3.107)

CM

From which the minimum expected cost per unit time is obtained by

N
C(N,T*) = CM[r(Ti) + E I Tm] i = 1,2,...,N (3.108)

moi

which yields

N N
r(T i ) + E ITm = r(T) + EI T (3.109)

moi m~jm

or
r(Ti ) - t(T.) = E(Ti-Tj) (3.110)

3 1
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One obvious solution is Ti = Tm 4 TN" To see if this produces a
1 N*

minimum point, we evaluate Ijc'[, which has been defined by (3.61) as

I]Yl = I[RKm]I

The second partial derivatives of R(N,T) are

Ri = CMr'T i ) ji (3.111)

= E j i

and consequently

r'(T1 ) E E E

E r'(T2 ) * E 

II' =C gr'(W3) ... E (3.112)

EE E r'(T1j)

i=

Setting T. = T. = TN for all i and j yields

r'(TN) E E E

E r'(TN ) . . E

'E= E E r'(TN) ... E (3.113)

E E E r'(TN )

i =1,,.N

which gives

IDII = r(T)
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t *

jD2J = [r'(TN )]2 -F

= [r'(T) - E[r'(TN ) + El

IDj = [r'(TN)] 3 - 3g2r'(T N*) + 2 E3

[r'(TN) - E 2 [f'(TN) + 2E]

and in general

ID = [r '(TN) - El (i-i) El (3.114)

In order to have a minimum, it is required that I'i > 0 for all i

and hence the sufficient condition that T= T = T N to be a minimum is

expressed by

r'(TN ) > E (3.115)

Setting T i = TN in relation (3.107), we get an equation that can

be solved for TN.

N' TN

[r(T N ) + E (N-1)TN ]NT N - Nf 0  r(t)dt

CR+(N-1)Co
*

o•T T* -* TN E(N-1) 2
or N(T Nr(N " f r(t)dt 2 T

- CR+(N'I)Co 4 h(N) (3.116)

The following theorem is useful for finding the sufficient condition

for minimum and an estimate of N*.
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Theorem 3.4

If (i) r(t) is strictly increasing in N and (ii) CR > Co , then the

solution to equation (3.116) is decreasing in N and unique.

Proof. For the right-hand side of (3.116), we have

-CR+Co
Ah(N) = h(N+l) - h(N) = N(N+I)CM (3.117)

From hypothesis (ii), we conclude that

Ah(N) ;S 0 (3.118)

For the right-hand side of (3.116), we can write
E x20

AgN(x) = gN+l(x) " gN(x) - x 0

or gN+l(x) k g1N(x) (3.119)

which implies that gN is increasing in N. From (3.118), we have

Ah(N) gN+1 (TN+I) - gN(TN) < 0

or gN+ 1 (TN+I) < gN(TN) (3.120)

By using the implication of (3.119), the left-hand side of (3.120) can

be decreased to get

gN(TN+I) < gN(TN)

and consequently

TN+ 1 < TN (3.121)

TN is unique since h(N) is independent of T* and

dgN(T N ) , •01
,T * TNr'(TN) + E(N-1)TN ' 0 (3.122)

dTN

Hence, TN is unique and decreasing in N.
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One application of the preceding theorem is to modify sufficient

condition (3.115). Since T1 is the largest value amont Ti ts, we have

r'(T*) > E (3.123)

where T, is the solution to equation (3.19).

As an example, consider a new system having Weibull failure time

distribution given by

xt
a+l

f(t) = Xtexp(- a' a 1; t > 0; X,> 0

T, is given by (3.21) and hence

(a+)C 1/(+1)
ax > 6 (3.124)

Therefore, in the Weibull case, if the age deterioration factor, E,

is small enough, then the optimal solution is unique and all major repair

time intervals are equal.

To obtain the optimal N, we set Ti = T in relation (3.106) to get

CCT EN(N-1)CM 2

C(,C R 2(-) +~f'~~t
C(Ni) NT (3.125)

We may treat N as a continuous variable and set the derivative of

(3.125) with respect to N to zero

aC(N,T) + ECRCo E CM
ON N2T

which yields
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N= 1 2 (CR'Co)(325
N = --" CM (3.125)

Let

N' (3.125)
TN,

Thus N* = [N'] or [N']+1 depending on the minimum cost 3btained from

(3.108).

C(N,T*) = CM[r(T N ) +rz(N-1)T N ]  (3.126)
N NI

Since T1 is the largest value among T*is, we can define a lower

limit for N

_r [ P(CR..Co)] (3.127)

For the Weibull distribution (3.127), this becomesX [ .C O
N a TC,-+ 1 /ct) (3.128)

This estimate for N can save computation time required to evaluate

the optimal solutions.

Let us evaluate equation (3.116) in case the underlying distribu-

tion is Weibull

ax T+ 1 +E (N-1)T 2 (31)
N 2 N TN = h(N) (3.129)

When a=1 and 3 the analytical solutions can be obtained. For a=l,

we get

L z - ----
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TN (N) 1/2 (3.130)

Similarly when a = 3

T - 31 +/.2.N12 + ()j1/2 (3.131)

Numerical Example 3.2

For a Weibull distribution

Xta+
1

f(t) = Xtaexp( - O- ) a > 1; A > 0; t > 0

with parameter X--1, a=2, and maintenance costs CR=1 5 , Co=5, CM=l,

and the deterioration rate =0.1. We applied gradient technique to

C(N,T) and the optimum number of major repairs per cycle (including

replacement) was found to be N =7 with average cost C(7,T )=5.14.

The optimum time intervals are Ti(7)=2.02; i=1,2,...,7. Figure 3.7

illustrates the behavior of C(N,T ) as N is incremented. It has a

decreasing and then increasing behavior and its minimum is unique.
,

The lower bound using (3.128) yields N k 6.

Thus far we have assumed that Ti=Tj=TN. In our numerical

examples, this seems to be the only optimal solution. In the Weibull

case with a=l, this is the only solution. For a~b, we can see easily

that

C(N,T)ITi=a , tj=b = C(N, )ITi=b, Tj=a i ~j (3.132)

which implies that equation (3.107) can have N!+1 solutions. If C(N,T)

has a unique minimum, then the only solution is Ti=Tj; ii.

...................
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incremented for Policy.U
(Model B)
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3.12 AVAILABILITY

In our discussion on type II policy, we assumed that replacement,

minimal repair, and major repair times possess zero duration. However,

by interpreting CR , CM, and Co as constant times for replacement,

minimal repair and major repair costs, we can formulate the type II

policy as steady state availability

N
1

A (N, =1 j
A(N' ) N N T.

T.+C-+(N-I)C + ir(tlj_l)dt

= [1 + C(NT)] "  (3.133.

It is seen easily that, from the optimization point of view, maxi-

mizing the availability is equivalent to minimizing the long-term average

cost per unit time.



CHAPTER 4

CONCLUSIONS

4.1 INTRODUCTION

We have studied the optimization of two major preventive mainte-

nance policies for repairable stochastically failing systems with lifetime

distribution function Fi(tlei_ ) and failure rate ri(tli_l), where i

indicates the number of performed repairs, and the system's age at the

time of the (i-l)s t repair is represented by ti I . Our objective for

each strategy is to optimize a set of successive maintenance intervals

T 1 ,T 2 , ... ,TN aiad the number of maintenance intervals N for each

renewal cycle so that the long-term average cost per unit time is min-

imized. Euch preventive maintenance policy has been classified into two

different classes, namely, state- and age-dependent models. State-

dependent refers to the case when the failure rate at the time of the

ith corrective maintenance is a function of previous number of repairs

cr ri(ti.1 1 ) = ri(t). In the age-dependent model, the system's age at

the tine of the ith repair will determine the (i+1) s t failure rate. This

is usuelly shown by ri(tiei 1 ) = ei 1 r(t) where 6i-1 = 1 + E [age(i-1)].

E is a constant positive parameter and is called age deterioration

factor. T)-e tnderlying lifetime distribution is Weibull with a strictly

increasing failure rate.

Our goal has been efficiency, and in this context, many results

have been obtained, among which only a few are to be mentioned.
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4.2 POLICY I

For state-dependent policy I, it was found that the computational

algorithm developed by Nguyen and Murthy (1981), can be improved.

This is done by finding a heuristic procedure. We can compute N' by

which C(N,co) is minimized, where N' provides a lower bound for N

This procedure is also applicable for an age-dependent in which the

underlying lifetime distribution has the Weibull form.

The age-dependent policy I was optimized by simulation and

approximation techniques. In both cases, using Weibull examples, it is

observed that:

1. There is a unique N that rirnimizes the cost function C(N,1).

2. The optimum planned repair times are ordered as

T1 (N) > T 2 (N) > ... > TN(N)

and

Tj(1) > T 1 (2) > ... > T1 (N ) > T1 (N +1) > ...

Where in the state-dependent model, developed by Nguyen and Murthy

(1981), T 1 (i); i = 1,2,...,N are ordered as

Tj(1) > T 1 (2) > ... > TI(N )< T1 (N +1) < ...

3. The results for simulation and approximation techniques seem

to be similar but not identical.

4.3 POLICY II

For a general type II policy and a fixed N, it has been shown that

the cost function C(N,T) has a relative minimum and also that the

optimal T i satisfies
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ri(Tiei_1) < r *(Tjlej_1 )  i < j

These properties are useful when a optimum search technique is used.

The following results are valid only for Weibull lifetime distribu-

tions and A-type age-dependent policy II.

1. It is proved that the optimum major repair times are ordered

as

TI(N) > T(N) > ... > TN(N)

2. Numerical examples have shown that the minimal cost, C(N,T),

as a function of N, is decreasing for N < N and increasing for N > N.
N *

3. 1 T i , the total duration of an optimal renewal cycle, is an

i=1

increasing function of N.

For B-type age-dependent policy II, the following results seem to

be important:

1. One solution is T. T = T N for all i and j. This is proved

sufficient when the age deterioration factor, , is not large and the

underlying failure distribution is Weibull.

2. If the replacement cost is more than the major repair cost,

then TN, the optimal repair interval, is decreasing in N.

3. Our numerical example shows that the minimal cost C(N,'*) is

convex.

4. There exists a lower bound on N , which can be used as a

good estimator.

5. Analytical solutions are obtainable for some Weibull cases.

6. If C(N,1) has a unique minimum with respect to r, then the
*only optimal solution is Ti = Tj; for all l,j.
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4.4 PROBLEMS FOR FURTHER RESEARCH

A few possible extensions are as follows:

1. For age-dependent policy 1, one may prove or determine con-

ditions under which the optimal expected long-term average cost per

unit time C(N,"T), as a function of N, is decreasing for N<N* and

increasing for N>N .To do so, equations (2.97), (2.103), and the

N
behavior of the expected age of the system, t N = 1 yi, as N increases

i=1

seem to be helpful.

2. One may consider extensions similar to (1), but using equations

(3.51) and (3.52) for policy II (type A). In this case, the increasing

*N
property of t N = Y T 1(N), as a function of N, must be proved, for

i=1
type B of policy II, equation (3.116) is essential.

3. We have assumed that the replacement, major repair, minimal

repair and breakdown costs are constant. One may take a more prac-

tical approach by defining these maintenance costs to be functions of

elapsed operating time of the system. In this case, it might be easier

to minimize the expected total cost rather than the expected long-term

average cost per unit time.

4. our models can be generalized by assuming non-zero and

random down-times for replacement and repairs.

5. Another generalization is to have failure rates increasing in

the number of major repairs and real age of the system simultaneously,

where we have studied them separately.

6. Policy II can be modified by including a constant or minimum

up-time constraint where, in policy 1, average up-time may be restricted.
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7. It was assumed that the minimal repairs always restore the

system to operation. One may reformulate the policy II such that failures

are corrected by minimal repairs with probability p a 0.

8. It may be possible to find parameter sets for which the optimal

policy permitting intermediate repairs has no such repairs.



APPENDIX

MULTIDIMENSIONAL MINIMIZATION

BY CONJUGATE GRADIENT METHOD

Conjugate gradients are among the advanced search methods to

calculate an unconstrained minimum of a real function with several

variables. The underlying method is found in an article by R. Fletcher

and C. M. Reeves (1964).

The method is used to find X* (a column vector) which minimizes

C(R) by a sequence of moves from an initial point R to a new point
0

X, then to X2 , and so on, where the gradient VC(R) = G(X) is

available analytically. Proceeding from an arbitrary initial search point

Xo , we locate a sequence of points that are successively closer to the

minimum by the relation

Xi+1  = Ri + aii

where Xi is the current point and ai is a positive scalar that defines

the distance between Xi and Xi+l along the search Si vector (a column

vector). Notice that the minimum along Si will occur where the

gradient of C(Zi+1) will be normal to i Although the algorithm is

supposed to find the optimum of a quadratic form, it is in fact appli-

cable to a broader class of functions. The reason is that any function

C(X) in the neighborhood of the required minimum 3X*, can be

approximated closely by the first three terms of its Taylor expansion

and consequently by a quadratic form.



-108-

Given Ro and G(o), the conjugate gradient method can be

described as follows:

STEP 0: Set i =0; 0 = 0G(Xo).

STEP 1: Form C(a i) = C(%i + ai'i)

STEP 2: Find a the value of ai which minimizes C(a.).

STEP 3: Obtain new point Xi+1 = Xi + ai S..

STEP 4: Determine new gradient G(X i+).

STEP 5: Evalutae C(Ri+)

STEP 6: To test for optimality, STOP if either

a. &Ci = C(3i+1 C(A i )  0.
b. (G(Xi+M) TG(31i+I) 6.

c. i an.

STEP 7: Compute Ai = (G(i))TG(Xl)
(GX)) TG(3z )

STEP 8: Find the new search vector S§ = "G(Xi+1) P i

STEP 9: Set i = i+1.

STEP 10: Go to STEP 1.

where 6 > 0 is a predetermined small number and n is the maximum

allowable number of iterations. Notice that Step 2 usually requires a

one-dimensional search.

We have used this algorithm to find the optimum scheduled repair

times for age-dependent policy I (approximation and age-dependentI

policy II, where underlying lifetime distributions had Weibull forms.

Despite the existence of nonnegativity contraint T k 0, the conjugate

gradient converges to the minimum point. Step 2 was carried out by

employing the Golden Section search technique, where the initial inter-

val of uncertainty for a, was restricted to be positive.
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Slightly less than 1.5 minutes of execution time was needed to find

the optimum planned repair times for approximated age-dependent

policy II with N=2. Using simulation, the same problem requires

slightly greater computation time, but when N is large, simulation

becomes more efficient than approximation. Much less execution time

was needed for age-dependent policy II (Type A). For a typical

example, less than one minute of computer time wa,- spent to minimize

C(N,') by finding T* when N took on values from 1 to 20.

Here, we list FORTRAN s-bprograms written for approximated

age-dependent policy I and type A of age-dependent policy II. It is

assumed that the underlying lifetime distribution has Weibull form:

Xoi 0. t*+ l

fi(tei-1) = 0 1 ep( " 01-1 X > 0, a 1, t > 0.

where i is given by relations (2.69) and (3.75) for policies I and II

respectively.
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SUBSOUTINE GRADIZ(NTEPSCRNIC0,CMLAN, ALPHA,C,G,TSUN)
DIMENSION T(NH),G(N) ,COEFT(40)

C GRADII ROUTINE EVALUATES THE GRADIENT OF THE EXPECTED LONG-TERM
C AVERAGE COST FUNCTION C(NT), WHEN THE AGE-DEPENDENT POLICY II
C IS UNDER CONSIDERATION (SECTION 310). THE UNDERLYING FAILURE
C CISTRIBUTIOI HAS THE VEIBU.L FORK WITH ALPHA AND LAM AS SCALE
C AND SHAPE PARAMETERS RESPECTIVELY. THE AGE FACTOR IS GIVEN BY
C EQUATION (3.75).

C VARIABLES THAT ARE GIVEN ARE:

C I : NUMBER OF MAJOR REPAIRS INCLUDING REPLACEMENT IN A CYCLE.
C T A I-DIN ARRAY OF SIZE N REPRESENTING THE SCHEDULED REPAIR TIMES.
C UPS: AGE DETERIORATION FACTOR
C CNICO = CRO(N-I)CO : REPLACEMENT AND MAJOR REPAIR COSTS IN A CYCLE.
C CILAM = CM*LAM : (MINIMAL REPAIR)*(NEIBULL'S SCALE PARAMETER).

C VARIABLES WILL BE RETURNED ARE :

C C: COST FUNCTION CIN,T)
C G : A I-DIN ARRAY REPRESENTING THE GRADIENT OF C(N,T)

ALPHA1 - ALPHA , 1.0
TSUM = 0.0
DO 10 1 = 1,N
TSUN = TSUN + T(I)

10 C01TINUE
D2 = 0.0
DO 15 I = 2, N
D2 a D2 + T(I)**ALPHAI

15 CONTINUE
COEPT(1) - 1.0
M = N- 

1

DO 20 1 = 1 .
COEFT(I + 1) = COEFT I) 4 EPS*T (I)

20 CONTINUE
D1 = 0.0
DO 25 1 = IN N
D1 = D1 0 COEFT(I)*T(I)**ALPHAI

25 CONTINUE
R - CSSICO + CBLAN *01/ALPHA1
R1 a CLAB*(T(I)**ALPHA + EPS*D2/ALPHA1)
C a R,'TSUE
G() a. (I1- C)/TSUE
DO 30 I a I ,O
12 a COEFT(I 1)*T (I 1) **ALPHA-COEFT(I) *TCI) **ALPHA-EPS*T (11) **

*ALPHA 1/ALPHAL
32 a CBLAB * 12
9(1 1 1 ) S G (1) + R 2/TSUH

30 CONTINUE
RETURN
END

-NI Ui#M-K nlm
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SUBROUTINE GRADI(C)
COMMON /BLT/T(20)/BLN/N/BLTH/THETA(20)/BLY/Y(20)/

S BLG/G(20)/BLL/LARO/BLA/ALPHA/BLC/CRCB/BLCO/CO/BLAI/ALPHAl/
S BLE/EPS
DIMENSION V(20),FC(20),D(20,20),FCT(20),R(20)
REAL 1AHOL(20)
ALR=LAO/KLPH Al

C ROUTINE GRAD I EVALUATES THE GRADIENTOF THE EXPECTED LONG-THEE AVERAGE
C COST CIN,T), WHEN APPROIIATED AGE-DEPENDENT TYPE II POLICY (DISCUSSED
C IN SECTION 2.9 ) IS APPLIED.
C THE UNDERLYING FAILURE DISTRIBUTION HAS THE WEIBULL FORE GIVEN BY EQ.
C 2.116 AND THE AGE FACTOR IN THIS CASE IS DEFINED BY EQ. 2.117
C OTEER VARIABLES ARE :

C I : NUMBER OF MAJOR REPAIRS INCLUDING REPLACEMENT IN A CYCLE.
C T : A I-DIN ARRAY OF SIZE N REPRESENTING THE SCHEDULED REPAIR TIMES.
C IPS: AGE DETERIORATION FACTOR
C C: COST FUNCTION C(NT)
C G : A I-DIN ARRAY REPRESENTING THE GRADIENT OF C(NT)
C ALFHAI - ALPHAf1
C AGE = SUN OF Y'S

C VARIABLE EQ. NO.

C v (2.124)
C 1 (2.123)
C THETA (2. 17)
C D (2.112)
C a (2.118)
C L (2.114)
C G .(2.115)

W-ALR** (1.0/ALPHA 1)
IR=*7 1)
S( 1)=REA(IBR)/V
THETA (1)-1.0
V( 1) =AREA (2*IR)/I
ALBiALR*EPS
DO 5 l=2,N
U=I**ALPBA#IALR*Y (I-i)
w=** (1.0/ALPHA1)

F (I) saINA~I ,]R)/u

THETA I1) =THETA (I- 11 .EPS*Y (I-1)
V(I) =AREA (2,IR)/WV*THETA(I))

5 CCNTIUUE
DO 10 I*l.l
PC (I) =BIR (T (I1) 1)
D (I,I)PFCII)

10 CONTINUE
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Do 15 3=1.31

DO 15 Jtl
L&.#D (I-1,J)
D (1,J) .- PS*& I*V (I)

i5 CONTINUE
DO 20 1=2,N
PCT (1) =T (1) ** &LPH~l *PC (1)

20 CONMIUZ
21 M) =CB*L&ft0*THET& (9) *T (N) **ALPHA
B is) ZRN) *PC(Ms)
DO 30 1=1,N1

STUO. 0
DO 25 BSt,NI

ST-ST #E*F CT (Mi 1)
25 CONTISUE

SI=ST*XLB
?T=L&30*THETA (I) *T 11) *ALPHA,

RTslT*F (I)

30 COMMNU
IGl= (TIIZT&(M) -1.O)/ESIY(N)
DO 35 1=1,N1
L(I)O0.O
DO 35 J=1,
L (1)Lz (I) fD (J,I)

35 CONTINuE
RI CR + IN- 1t) *C 0414*CB
R2=0. 0
DO 40 t=1.5
E2B2+D (1,1)

40 CONTINUE
ElRI-CB*R2
CB)/AGE
DO 45 1=1.5

G (I) =G (I) /AGE
45 CONTINUE

BfTUBI
END
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FUNlCTIONI &RE&tK,IR)
DIMENSION B(140,140)

C &BII(K,X) PERFORMS lIMEEICIL INTEGRITION IN ITEEVAL (0,1) FOR
C EIP(-I**(&LPHk~1)) 'IF K1l
C X**(ALPHI,1)*EXP(-X**(kLPH&41)) IF- K=2

DO 1.31 I11,40
Do 1.31 J-1,140

131 CONTINUE
1L0. C
DEL=ZE-XL
B(1.1)=DEL*(FD(K.XL)4,FD(K.XRfl/2.0
B (1, 2)-B 1,1) 4DEL*ID (K, (XL4IE) /2.0)
B (1, 2)xB (1, 2) /2. 0

B(2, 1):B42,1) /3.0
J=3

5 D=DIL.4(2** (J- 1))
I=XL-C
NN.24**(3-2)
SN 0.0

DO 10 1-1,NE
X=I42*D
SUNS3to'D (K, 1)

10 CONTINUE
B ( 1,J)-B ( 1,J- 1) /2.04D*SUM
Lill
DO 15 L=2,J
Km=J-L#.1

=L1*14
B (L,91)zL 1*B(L-1 ,KKI 1) -B (L- 1, KK)
8B(L, KI) -B (L.K K)/ (Ll-1)

15 CONTINUE
Bl= B (J. 1) -B (J-1.r1) )/6 JJ.1)

IF (B1.LT.1.OR-6) GO To 20

GO TC 5
20 &REA=EIJ,1)

END



?UNCTION PBIB(X.K)
CON5CI/BLL/LAft0/BLA1/ALPE&1/BLTHf/THET& (20)
REAL Liflo

C JBIR VILL RETURN THE VALUE OF
C 1fi-I**(ALPB&*1) *LAE0*THET&/(&LPH&+1))

I 1;vLk 0* THETA (K) /ALPH I
X2-1**ALPH&I
13-11*12
17(X3 .LT. 1.0-75) GO TO 1
F518 lIP (-13)
RETUS5

I FBAE1l.0
RETURN
END

FUNCTION FD(K,X)
CONRI /BL~l/&'LPH&l

C PD(KWI) WILL RETURN THE VALUE OF

C EXP(-X**(ALPHA+1)) IF K1l

C 1**(&LPaA9.1)*EIP(-X**(LLPHIIl)) IF K=2

17(1 .LE. 1.01-75 .&NO. K .EQ. 2) GO TO 14
17(1 .Ll. 1.01-75 .18D. K -EQ. I)GO TO 5
lis**&LPH&1
17111 .GT. 1.01-75) GO TO 3

GO TO 2
3 11(X1 .GT. 170.0) GO TO 14

2 IP(K.EQ.1) GO TO I
FDI 1*12
BET U I

I ?D=12
RETUNN

14 YD=O.0
BUGII

s rD=1.0
BETO B
END
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